Author Archives: Paul Older

Cardiac Reserve and Exercise Capacity: Insights from Combined Cardiopulmonary and Exercise Echocardiography Stress Testing.

Pugliese NR; De Biase N; Conte L; Gargani L; Mazzola M; Fabiani I; Natali A; Dini FL; Frumento P; Rosada J;
Taddei S; Borlaug BA; Masi S;

Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography [J Am Soc Echocardiogr] 2020 Oct 06. Date of Electronic Publication: 2020 Oct 06.

Background: Cardiopulmonary exercise testing (CPET) represents the gold standard to estimate peak oxygen consumption (VO 2 ) noninvasively. To improve the analysis of the mechanisms behind effort intolerance, we examined whether exercise stress echocardiography measurements relate to directly measured peak VO 2 during exercise in a large cohort of patients within the heart failure (HF) spectrum.
Methods: We performed a symptom-limited graded ramp bicycle CPET exercise stress echocardiography in 30 healthy controls and 357 patients: 113 at risk of developing HF (American College of Cardiology/American Heart Association stage A-B) and 244 in HF stage C with preserved (HFpEF, n = 101) or reduced ejection fraction (HFrEF, n = 143).
Results: Peak VO 2 significantly decreased from controls (23, 21.7-29.7 mL/kg/minute; median, interquartile range) to stage A-B (18, 15.4-20.7 mL/kg/minute) and stage C (HFpEF: 13.6, 11.8-16.8 mL/kg/minute; HFrEF: 14.2, 10.7-17.5 mL/kg/minute). A regression model to predict peak VO 2 revealed that peak left ventricular (LV) systolic annulus tissue velocity (S’), peak tricuspid annular plane systolic excursion/systolic pulmonary artery pressure (right ventricle-pulmonary artery coupling), and low-load left atrial (LA) reservoir strain/E/e’ (LA compliance) were independent predictors, in addition to peak heart rate, stroke volume, and workload (adjusted R 2  = 0.76, P < .0001). The model was successfully tested in subjects with atrial fibrillation (n = 49) and with (n = 224) and without (n = 163) beta-blockers (all P < .01). Peak S’ showed the highest accuracy in predicting peak VO 2  < 10 mL/kg/minute (cut point ≤ 7.5 cm/sec, area under the curve = 0.92, P < .0001) and peak VO 2  > 20 mL/kg/minute (cut point > 12.5 cm/sec, area under the curve = 0.84, P < .0001) in comparison with the other cardiac variables of the model (P < .05).
Conclusions: Peak VO 2 is directly related to measures of LV systolic function, LA compliance, and right ventricle-pulmonary artery coupling, in addition to heart rate and stroke volume and independently of workload, age, and sex. The evaluation of cardiac mechanics may provide more insights into the causes of effort intolerance in subjects from HF stages A-C.

Determinants of exercise capacity in children and adolescents with severe therapy-resistant asthma.

Schindel CS; Schiwe D; Heinzmann-Filho JP;Gheller MF; Campos NE; Pitrez PM; Donadio MVF;

The Journal of asthma : official journal of the Association for the Care of Asthma [J Asthma] 2020 Oct 07, pp. 1-13. Date of Electronic Publication: 2020 Oct 07.

Objective: To evaluate the exercise capacity of children and adolescents with severe therapy resistant asthma (STRA) aiming to identify its main determinants.
Methods: Cross-sectional study including individuals aged 6 to 18 years with a diagnosis of STRA. Clinical (age and gender), anthropometric (weight, height and body mass index) and disease control data were collected. Lung function (spirometry), cardiopulmonary exercise testing (CPET) and exercise-induced bronchoconstriction (EIB) test were performed.
Results: Twenty-four patients aged 11.5 ± 2.6 years were included. The mean forced expiratory volume in one second (FEV 1 ) was 91.3 ± 9.2%. EIB occurred in 54.2% of patients. In CPET, the peak oxygen uptake (VO 2 peak) was 34.1 ± 7.8 mL.kg -1 .min -1 . A significant correlation between ventilatory reserve and FEV 1 (r = 0.57; p  = 0.003) was found. Similarly, there was a significant correlation between CPET and percent of FEV 1 fall in the EIB test for both V E /VO 2 (r = 0.47; p  = 0.02) and V E /VCO 2 (r = 0.46; p  = 0.02). Patients with FEV 1 <80% had lower ventilatory reserve ( p  = 0.009). In addition, resting heart rate correlated with VO 2 peak (r=-0.40; p  = 0.04), V E /VO 2 (r = 0.46; p  = 0.02) and V E /VCO 2 (r = 0.48; p  = 0.01).
Conclusions: Exercise capacity is impaired in approximately 30% of children and adolescents with STRA. The results indicate that different aspects of aerobic fitness are influenced by distinct determinants, including lung function and EIB.

Impact of obstructive sleep apnea on cardiopulmonary performance, endothelial dysfunction, and pulmonary hypertension during exercise.

Jen R; Orr JE; Gilbertson D; Fine J; Li Y; Wong D; Hopkins SR; Raisingani A; Malhotra A;

Respiratory physiology & neurobiology [Respir Physiol Neurobiol] 2020 Oct 01, pp. 103557. Date of Electronic Publication: 2020 Oct 01.

Rationale: OSA has been associated with reduced exercise capacity. Endothelial dysfunction and exercise-induced pulmonary hypertension (ePH) may be mediators of this impairment. We hypothesized that OSA severity would be associated with impaired exercise performance, endothelial dysfunction, and ePH.
Methods: Subjects with untreated OSA were recruited. Subjects underwent endothelial function, and cardiopulmonary exercise testing with an echocardiogram immediately before and following exercise.
Results: 22 subjects were recruited with mean age 56 ± 8 years, 74 % male, BMI 29 ± 3 kg/m 2 , and AHI 22 ± 12 events/hr. Peak V˙O 2 did not differ from normal (99.7 ± 17.3 % predicted; p = 0.93). There was no significant association between OSA severity (as AHI, ODI) and exercise capacity, endothelial function, or pulmonary artery pressure. However, ODI, marker of RV diastolic dysfunction, and BMI together explained 59.3 % of the variability of exercise performance (p < 0.001) via our exploratory analyses.
Conclusions: Exercise capacity was not impaired in this OSA cohort. Further work is needed to elucidate mechanisms linking sleep apnea, obesity, endothelial dysfunction and exercise impairment.

Never-smokers with occupational COPD have better exercise capacities and ventilatory efficiency than matched smokers with COPD.

Soumagne T; Guillien A; Roche N; Dalphin JC; Degano B;

Journal of applied physiology (Bethesda, Md. : 1985) [J Appl Physiol (1985)] 2020 Oct 01. Date of Electronic Publication: 2020 Oct 01.

Background: COPD in never-smokers exposed to organic dusts is still poorly characterized. Therapeutic strategies in COPD are only evaluated in smoking-related COPD. To understand how never-smokers with COPD behave during exercise is an important prerequisite for optimal management.
Objectives: To compare physiological parameters measured at exercise between never-smokers exposed to organic dusts with COPD and patients with smoking-related COPD matched for age, sex and severity of airway obstruction. Healthy controls were also studied.
Methods: Dyspnea (Borg scale), exercise tolerance and ventilatory constraints were assessed during incremental cycle cardiopulmonary exercise testing in COPD patients at mild-to-moderate stages (22 exposed to organic dusts, postbronchodilator FEV 1 /FVC z-score: -2.44±0.72 and FEV 1 z-score: -1.45±0.78; 22 with smoking-related COPD, FEV 1 /FVC z-score: -2.45±0.61; FEV 1 z-score: -1.43±0.69) and 44 healthy controls (including 22 never-smokers).
Results: Despite the occurrence of similar significant dynamic hyperinflation, never-smokers COPD patients exposed to organic dusts had lower dyspnea ratings than those with smoking-related COPD. They also had higher peak oxygen consumption, peak power output and better ventilatory efficiency than smoking-related COPD, all these parameters being similar controls. Differences in exercise capacity between the two groups of COPD were mainly driven by better ventilatory efficiency stemming from preserved diffusing capacity.
Conclusion Never-smokers exposed to organic dusts with mild-to-moderate COPD have better exercise capacities, better ventilatory efficiency and better diffusion capacity than matched patients with smoking-related COPD.

Prognostic value of cardio-pulmonary exercise testing in cardiac amyloidosis.

Nicol M; Deney A; Lairez O; Vergaro G; Emdin M;Inamo J; Montfort A; Neviere R; Damy T; Harel S;Royer B; Baudet M; Cohen-Solal A; Arnulf B;Logeart D;

European journal of heart failure [Eur J Heart Fail] 2020 Oct 02. Date of Electronic Publication: 2020 Oct 02.

Background: In amyloid patients, cardiac involvement dramatically worsens functional capacity and prognosis.
Purpose: We sought to study how the cardio-pulmonary exercise test (CPET) could help in functional assessment and risk stratification of patients with cardiac amyloidosis (CA).
Methods: We carried out a multicenter study including patients with light chain (AL) or transthyretin (TTR) CA. All patients underwent exhaustive examination including CPET and follow-up. The primary prognostic endpoint was the occurrence of death or heart failure (HF) hospitalization.
Results: We included 150 patients: 91 AL and 59 TTR CA. Median age, systolic blood pressure, NT-proBNP and cardiac troponin T were 70 [64-78] years old, 121 [IQR 109-139] mmHg, 2809 [IQR 1218-4638] ng/L and 64 [IQR 33-120] ng/L respectively. NYHA classes were I- II in 64%. Median peak VO 2 and circulatory power were low at 13.0 mL/kg/min [10.0-16.9] and 1729 mmHg.mL -1 min _1 [1318-2614] respectively. The VE/VCO 2 slope was increased to 37 [IQR 33-45]. Seventy-seven patients (51%) had chronotropic insufficiency. After a median follow-up of 20 months, there were 37 deaths and 44 HF hospitalizations. Multivariate Cox analysis shows that peak VO 2  ≤ 13 mL/kg/min (HR 2.7; CI95% 1.6-4.8), circulatory power ≤ 1800 mmHg.mL.min -1 (HR 2.4; CI95% 1.2-4.6) and NT-proBNP ≥1800 ng/L (HR 2.2; CI95% 1.1-4.3) were associated with the primary outcome. There was no event in patients with both peak VO2 > 13 mL/kg/min and NTproBNP <1800 ng/L, while the association of VO2 ≤ 13 mL/kg/min and NTproBNP ≥1800 ng/L identified a very high-risk subgroup.
Conclusion: In CA, CPET helps to assess functional capacity, circulatory and chronotropic responses and helps to assess the prognosis of patients along with cardiac biomarkers.

Safety procedures for exercise testing in the scenario of COVID-19: a position statement of the Società Italiana Scienze Motorie e Sportive.

Venturelli M; Cè E; Paneroni M; Guazzi M; Lippi G; Paoli A; Baldari C; Schena F; Esposito F;

Sport sciences for health [Sport Sci Health] 2020 Sep 11, pp. 1-7. Date of Electronic Publication: 2020 Sep 11.

Recent data on coronavirus disease 2019 (COVID-19) pandemic showed that the virus is mostly conveyed by respiratory droplets that are produced at high intensity especially when an infected subject coughs or sneezes. Therefore, elevated volume ventilations, usually reached during physical efforts and exercise, are a potential source of contamination. On the other hand, the lockdown period which has lasted for nearly 2 months and is actually involving several countries worldwide, obliged a large part of human population to sedentary behaviors, drastically reducing their physical activity level, and reducing their cardiopulmonary fitness. Therefore, cardiopulmonary exercise testing could be beneficial, so that a safe and well-weighted return to pre-lockdown active lifestyle can be efficiently planned. However, specific guidelines on exercise testing safety procedures in the era of COVID-19 are unavailable so far. This article is aimed to provide an overview of safety procedures for exercise testing during and after COVID-19 worldwide pandemic.

Type 2 diabetes is an independent predictor of lowered peak aerobic capacity in heart failure patients with non-reduced or reduced left ventricular ejection fraction.

Abe T; Yokota T; Fukushima A; Kakutani N; Katayama T; Shirakawa R; Maekawa S; Nambu H; Obata Y; Yamanashi K; Nakano I; Takada S; Yokota I; Okita K; Kinugawa S; Anzai T;

Cardiovascular diabetology [Cardiovasc Diabetol] 2020 Sep 19; Vol. 19 (1), pp. 142. Date of Electronic Publication: 2020 Sep 19.

Background: Although type 2 diabetes mellitus (T2DM) is one of the most frequent comorbidities in patients with chronic heart failure (CHF), the effects of T2DM on the exercise capacity of CHF patients are fully unknown. Here, we tested the hypothesis that the coexistence of T2DM lowers CHF patients’ peak aerobic capacity.
Methods: We retrospectively analyzed the cases of 275 Japanese CHF patients with non-reduced ejection fraction (left ventricular ejection fraction [LVEF] ≥ 40%) or reduced EF (LVEF < 40%) who underwent cardiopulmonary exercise testing. We divided them into diabetic and nondiabetic groups in each CHF cohort.
Results: The mean peak oxygen uptake (VO 2 ) value was 16.87 mL/kg/min in the non-reduced LVEF cohort and 15.52 mL/kg/min in the reduced LVEF cohort. The peak VO 2 was lower in the diabetics versus the nondiabetics in the non-reduced LVEF cohort with the mean difference (95% confidence interval [95% CI]) of - 0.93 (- 1.82 to - 0.04) mL/kg/min and in the reduced LVEF cohort with the mean difference of - 1.05 (- 1.96 to - 0.15) mL/kg/min, after adjustment for age-squared, gender, anemia, renal function, LVEF, and log B-type natriuretic peptide (BNP). The adjusted VO 2 at anaerobic threshold (AT), a submaximal aerobic capacity, was also decreased in the diabetic patients with both non-reduced and reduced LVEFs. Intriguingly, the diabetic patients had a lower adjusted peak O 2 pulse than the nondiabetic patients in the reduced LVEF cohort, but not in the non-reduced LVEF cohort. A multivariate analysis showed that the presence of T2DM was an independent predictor of lowered peak VO 2 in CHF patients with non-reduced LVEF and those with reduced LVEF.
Conclusions: T2DM was associated with lowered peak VO 2 in CHF patients with non-reduced or reduced LVEF. The presence of T2DM has a negative impact on CHF patients’ exercise capacity, and the degree of impact is partly dependent on their LV systolic function.

Age-related change in peak oxygen uptake and change of cardiovascular risk factors. The HUNT study.

Letnes JM; Dalen H; Aspenes ST; Salvesen Ø; Wisløff U; Nes BM;

Progress in cardiovascular diseases [Prog Cardiovasc Dis] 2020 Sep 21. Date of Electronic Publication: 2020 Sep 21.

Background: Large longitudinal studies on change in directly measured peak oxygen uptake (VO 2peak ) is lacking, and its significance for change of cardiovascular risk factors is uncertain. We aimed to assess ten-year change in VO 2peak and the influence of leisure-time physical activity (LTPA), and the association between change in VO 2peak and change in cardiovascular risk factors.
Methods and Results: A healthy general population sample had their VO 2peak directly measured in two (n = 1471) surveys of the Nord-Trøndelag Health Study (HUNT3; 2006-2008 and HUNT4; 2017-19). Average ten-year decline in VO 2peak was non-linear and progressed from 3% in the third to about 20% in the eight decade in life and was more pronounced in men. The fit linear mixed models including an additional 2933 observations from subjects participating only in HUNT3 showed similar age-related decline. Self-reported adherence to LTPA recommendations was associated with better maintenance of VO 2peak , with intensity seemingly more important than minutes of LTPA with higher age. Adjusted linear regression analyses showed that one mL/kg/min better maintenance of VO 2peak was associated with favorable changes of individual cardiovascular risk factors (all p ≤ 0.002). Using logistic regression one mL/kg/min better maintenance of VO 2peak was associated with lower adjusted odds ratio of hypertension (0.95 95% CI 0.92 to 0.98), dyslipidemia (0.92 95% CI 0.89 to 0.94), and metabolic syndrome (0.86 95% CI 0.83 to 0.90) at follow-up.
Conclusions: Although VO 2peak declines progressively with age, performing LTPA and especially high-intensity LTPA is associated with less decline. Maintaining VO 2peak is associated with an improved cardiovascular risk profile.

Functional Capacity Past Age 40 in Patients With Congenital Ventricular Septal Defects.

Maagaard M; Eckerström F; Boutrup N; Hjortdal VE;

Journal of the American Heart Association [J Am Heart Assoc] 2020 Sep 23, pp. e015956. Date of Electronic Publication: 2020 Sep 23.

Background Ventricular septal defects (VSD), when treated correctly in childhood, are considered to have great prognoses, and the majority of patients are discharged from follow-up when entering their teens. Young adults were previously found to have poorer functional capacity than healthy peers, but the question remains whether functional capacity degenerates further with age.
Methods and Results A group of 30 patients with surgically closed VSDs (51±8 years) with 30 matched, healthy control participants (52±9 years) and a group of 30 patients with small unrepaired VSDs (55±12 years) and 30 matched control participants (55±10 years) underwent cardiopulmonary exercise testing using an incremental workload protocol and noninvasive gas measurement. Peak oxygen uptake was lower in participants with closed VSDs than matched controls (24±7 versus 34±9 mL/min per kg, P <0.01) and with unrepaired VSDs than matched controls (26±5 versus 32±8 mL/min per kg, P <0.01). Patients demonstrated lower oxygen uptake from exercise levels at 20% of maximal workload compared with respective control groups ( P <0.01). Peak ventilation was lower in patients with surgically closed VSDs than control participants (1.0±0.3 versus 1.4±0.4 L/min per kg, P <0.01) but similar in patients with unrepaired VSDs and control participants ( P =0.14). Exercise capacity was 29% lower in older patients with surgically closed VSDs than healthy peers, whereas younger patients with surgically closed VSDs previously demonstrated 18% lower capacity compared with peers. Older patients with unrepaired VSDs reached 21% lower exercise capacity, whereas younger patients with unrepaired VSDs previously demonstrated 17% lower oxygen uptake than healthy peers.
Conclusions Patients with VSDs demonstrate poorer exercise capacity than healthy peers. The difference between patients and control participants increased with advancing age-and increased most in patients with operated VSDs-compared with previous findings in younger patients. Results warrant continuous follow-up for these simple defects.

Establishment of exercise intensity for patients with chronic heart failure equivalent to anaerobic threshold based on 6-minute walking test.

Luo Q; Li C; Zhuang B; Li G; Luo L; Ni Y; Huang Z; Wang L; Song H; Yan W; Shen Y;

Annals of palliative medicine [Ann Palliat Med] 2020 Aug 27. Date of Electronic Publication: 2020 Aug 27.Publication Model:

Background: The study aimed to investigate the relationship between the aerobic exercise intensity determined by 6-minute walking distance (6MWD) and its counterpart based on anaerobic threshold (AT) in chronic heart failure (CHF) individuals for exploring suitable means for CHF exercise rehabilitation.
Methods: We retrospectively analyzed data in patient with CHF, who performed cardiopulmonary exercise test (CPET) and 6-minute walking test (6MWT) uniformly. Anthropometric characteristics, left ventricular ejection fraction (LVEF), and multiple parameters of 6MWT and AT were collected.
Results: The results of the analysis revealed that the 6MWD was correlated with the AT positively [CHF group: r=0.433, heart failure with reduced ejection fraction (HFrEF) group: r=0.395, heart failure with intermediate ejection fraction (HFmEF) group: r=0.477, heart failure with preserved ejection fraction (HFpEF) group: r=0.445; all P<0.05]. The regression analysis showed that the linear equation model developed can predict exercise intensity based on AT (EIAT) by exercise intensity based on 6MWD (EI6MWD), the aerobic exercise intensity based on AT and 6MWD respectively, of CHF patients.
Conclusions: There is a correlation between EI6MWD and EIAT. 74.6-87.4% of EI6MWD in patients with CHF is equivalent to EIAT. It is feasible to establish the aerobic exercise intensity of patients with CHF equivalent to AT based on 6MWD.