Category Archives: Abstracts

Exploring the Anthropometric, Cardiorespiratory, and Haematological Determinants of Marathon Performance.

Christou GA; Pagourelias ED; Deligiannis AP; Kouidi EJ;

Frontiers in physiology [Front Physiol] 2021 Sep 03; Vol. 12, pp. 693733.
Date of Electronic Publication: 2021 Sep 03 (Print Publication: 2021).

Aim: We aimed to investigate the main anthropometric, cardiorespiratory and haematological factors that can determine marathon race performance in marathon runners.
Methods: Forty-five marathon runners (36 males, age: 42 ± 10 years) were examined during the training period for a marathon race. Assessment of training characteristics, anthropometric measurements, including height, body weight ( n = 45) and body fat percentage (BF%) ( n = 33), echocardiographic study ( n = 45), cardiopulmonary exercise testing using treadmill ergometer ( n = 33) and blood test ( n = 24) were performed. We evaluated the relationships of these measurements with the personal best marathon race time (MRT) within a time frame of one year before or after the evaluation of each athlete.
Results: The training age regarding long-distance running was 9 ± 7 years. Training volume was 70 (50-175) km/week. MRT was 4:02:53 ± 00:50:20 h. The MRT was positively associated with BF% ( r = 0.587, p = 0.001). Among echocardiographic parameters, MRT correlated negatively with right ventricular end-diastolic area (RVEDA) ( r = -0.716, p < 0.001). RVEDA was the only independent echocardiographic predictor of MRT. With regard to respiratory parameters, MRT correlated negatively with maximum minute ventilation indexed to body surface area (VEmax/BSA) ( r = -0.509, p = 0.003). Among parameters of blood test, MRT correlated negatively with haemoglobin concentration ( r = -0.471, p = 0.027) and estimated haemoglobin mass (Hbmass) ( r = -0.680, p = 0.002). After performing multivariate linear regression analysis with MRT as dependent variable and BF% (standardised β = 0.501, p = 0.021), RVEDA (standardised β = -0.633, p = 0.003), VEmax/BSA (standardised β = 0.266, p = 0.303) and Hbmass (standardised β = -0.308, p = 0.066) as independent variables, only BF% and RVEDA were significant independent predictors of MRT (adjusted R 2 = 0.796, p < 0.001 for the model).
Conclusions: The main physiological determinants of better marathon performance appear to be low BF% and RV enlargement. Upregulation of both maximum minute ventilation during exercise and haemoglobin mass may have a weaker effect to enhance marathon performance.

Minute ventilation/carbon dioxide production in congenital heart disease.

Hager A;

European respiratory review : an official journal of the European Respiratory Society [Eur Respir Rev] 2021 Sep 15; Vol. 30 (161). Date of Electronic Publication: 2021 Sep 15 (Print Publication: 2021).

This review summarises various applications of how ventilatory equivalent (ventilatory efficiency or better still ventilatory inefficiency) and the minute ventilation ( VE )/carbon dioxide production ( VCO 2 ) slope obtained from cardiopulmonary exercise testing (CPET) can be used in the diagnostic or prognostic workup of patients with congenital heart disease.The field of congenital heart disease comprises not only a very heterogeneous patient group with various heart diseases, but also various conditions in different stages of repair, as well as the different residuals seen in long-term follow-up. As such, various physiologic disarrangements must be considered in the analysis of increased VE / VCO 2 slope from CPET in patients with congenital heart disease. In addition to congestive heart failure (CHF), cyanosis, unilateral pulmonary stenosis and pulmonary hypertension (PH) provide the background for this finding. The predictive value of increased VE / VCO 2 slope on prognosis seems to be more important in conditions where circulatory failure is associated with failure of the systemic ventricle. In cyanotic patients, those with Fontan circulation, or those with substantial mortality from arrhythmia, the impact of VE / VCO 2 on prognosis is not that important.

Cardiopulmonary Exercise Test in the Detection of Unexplained Post-COVID-19 Dyspnea.

Djokovic D; Nikolic M; Muric N; Nedeljkovic I;Simovic S; Novkovic L; Cupurdija V; Savovic Z; Vuckovic-Filipovic J; Susa R; Cekerevac I;

International heart journal [Int Heart J] 2021 Sep 17. Date of Electronic Publication: 2021 Sep 17.

There is emerging evidence of prolonged recovery in survivors of coronavirus disease 2019 (COVID-19), even in those with mild COVID-19. In this paper, we report a case of a 39-year-old male with excessive body weight and a history of borderline values of arterial hypertension without therapy, who was mainly complaining of progressive dyspnea after being diagnosed with mild COVID-19. According to the recent guidelines on the holistic assessment and management of patients who had COVID-19, all preferred diagnostic procedures, including multidetector computed tomography (CT), CT pulmonary angiogram, and echocardiography, should be conducted. However, in our patient, no underlying cardiopulmonary disorder has been established. Therefore, considering all additional symptoms our patient had beyond dyspnea, our initial differential diagnosis included anxiety-related dysfunctional breathing. However, psychiatric evaluation revealed that our patient had only a mild anxiety level, which was unlikely to provoke somatic complaints. We decided to perform further investigations considering that cardiopulmonary exercise test (CPET) represents a reliable diagnostic tool for patients with unexplained dyspnea. Finally, the CPET elucidated the diastolic dysfunction of the left ventricle, which was the most probable cause of progressive dyspnea in our patient. We suggested that, based on uncontrolled cardiovascular risk factors our patient had, COVID-19 triggered a subclinical form of heart failure (HF) with preserved ejection fraction (HFpEF) to become clinically manifest. Recently, the new onset, exacerbation, or transition from subclinical to clinical HFpEF has been associated with COVID-19. Therefore, in addition to the present literature, our case should warn physicians on HFpEF among survivors of COVID-19.

Minute ventilation/carbon dioxide production in congenital heart disease

Hager A;

Eur Respir Rev 2021; 30: 200178 [DOI: 10.1183/16000617.0178-2020].

This review summarises various applications of how ventilatory equivalent (ventilatory efficiency or better
still ventilatory inefficiency) and the minute ventilation (VʹE)/carbon dioxide production (VʹCO2) slope
obtained from cardiopulmonary exercise testing (CPET) can be used in the diagnostic or prognostic
workup of patients with congenital heart disease.
The field of congenital heart disease comprises not only a very heterogeneous patient group with various
heart diseases, but also various conditions in different stages of repair, as well as the different residuals
seen in long-term follow-up. As such, various physiologic disarrangements must be considered in the
analysis of increased VʹE/VʹCO2 slope from CPET in patients with congenital heart disease. In addition to
congestive heart failure (CHF), cyanosis, unilateral pulmonary stenosis and pulmonary hypertension (PH)
provide the background for this finding. The predictive value of increased VʹE/VʹCO2 slope on prognosis
seems to be more important in conditions where circulatory failure is associated with failure of the
systemic ventricle. In cyanotic patients, those with Fontan circulation, or those with substantial mortality
from arrhythmia, the impact of VʹE/VʹCO2 on prognosis is not that important.

Effects of the exercise training on skeletal muscle oxygen consumption in heart failure patients with reduced ejection fraction.

Guimarães GV; Ribeiro F; Castro RE; Roque JM; Machado ADT; Antunes-Correa LM; Ferreira SA; Bocchi EA;

International journal of cardiology [Int J Cardiol] 2021 Sep 07. Date of Electronic Publication: 2021 Sep 07.

Aims: Skeletal muscle dysfunction is a systemic consequence of heart failure (HF) that correlates with functional capacity. However, the impairment within the skeletal muscle is not well established. We investigated the effect of exercise training on peripheral muscular performance and oxygenation in HF patients.
Methods and Results: HF patients with ejection fraction ≤40% were randomized 2:1 to exercise training or control for 12 weeks. Muscle tissue oxygen was measured noninvasively by near-infrared spectroscopy (NIRS) during rest and a symptom-limited cardiopulmonary exercise test (CPET) before and after intervention. Measurements included skeletal muscle oxygenated hemoglobin concentration, deoxygenated hemoglobin concentration, total hemoglobin concentration, VO 2 peak, VE/VCO 2 slope, and heart rate. Muscle sympathetic nerve activity by microneurography, and muscle blood flow by plethysmography were also assessed at rest pre and post 12 weeks. Twenty-four participants (47.5 ± 7.4 years, 58% men, 75% no ischemic) were allocated to exercise training (ET, n = 16) or control (CG, n = 8). At baseline, no differences between groups were found. Exercise improved VO 2 peak, slope VE/VCO 2 , and heart rate. After the intervention, significant improvements at rest were seen in the ET group in muscle sympathetic nerve activity and muscle blood flow. Concomitantly, a significant decreased in Oxy-Hb (from 29.4 ± 20.4 to 15.7 ± 9.0 μmol, p = 0.01), Deoxi-Hb (from 16.3 ± 8.2 to 12.2 ± 6.0 μmol, p = 0.003) and HbT (from 45.7 ± 27.6 to 27.7 ± 13.4 μmol, p = 0.008) was detected at peak exercise after training. No changes were observed in the control group.
Conclusion: Exercise training improves skeletal muscle function and functional capacity in HF patients with reduced ejection fraction. This improvement was associated with increased oxygenation of the peripheral muscles, increased muscle blood flow, and decreased sympathetic nerve activity.

Cardiorespiratory Abnormalities in Patients Recovering from COVID-19.

Szekely Y; Lichter Y; Sadon S; Lupu L; Taieb P; Banai A; Sapir O; Granot Y; Hochstadt A;Friedman S; Laufer-Perl M; Banai S; Topilsky Y;

Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography [J Am Soc Echocardiogr] 2021 Sep 08. Date of Electronic Publication: 2021 Sep 08.

Background: Large number of patients around the world are recovering from COVID-19; many of them report persistence of symptoms.
Objectives: We sought to test pulmonary, cardiovascular and peripheral responses to exercise in patients recovering from COVID-19.
Methods: We prospectively evaluated patients who recovered from COVID-19 using a combined anatomic/functional assessment. All patients underwent clinical examination, laboratory tests, and a combined stress echocardiography and cardiopulmonary exercise test. We measured left ventricular volumes, ejection fraction, stroke volume, heart rate, E/e’ ratio, right ventricular function, VO 2 , lung volumes, Ventilatory efficiency, O 2 saturation and muscle O 2 extraction in all effort stages and compared them to historical controls.
Results: A total of 71 patients were assessed 90.6±26 days after onset of COVID-19 symptoms. Only 23 (33%) were asymptomatic. The most common symptoms were fatigue (34%), muscle weakness/pain (27%) and dyspnea (22%). VO 2 was lower among post-COVID-19 patients compared to controls (p=0.03, group by time interaction p=0.007). Reduction in peak VO 2 was due to a combination of chronotropic incompetence (75% of post-COVID-19 patients vs. 8% of controls, p<0.0001) and insufficient increase in stroke volume during exercise (p=0.0007, group by time interaction p=0.03). Stroke volume limitation was mostly explained by diminished increase in left ventricular end-diastolic volume (p=0.1, group by time interaction p=0.03) and insufficient increase in ejection fraction (p=0.01, group by time interaction p=0.01). Post-COVID-19 patients had higher peripheral O 2 extraction (p=0.004) and did not have significantly different respiratory and gas exchange parameters compared to controls.
Conclusions: Patients recovering from COVID-19 have symptoms associated with objective reduction in peak VO 2 . The mechanism of this reduction is complex and mainly involves a combination of attenuated heart rate and stroke volume reserve.

Peak oxygen uptake in sportsmen with spinal cord injury: importance of body composition.

Gervasi SF; Orvieto S; Sollazzo F; Bianco M; Cuccaro F; Zeppilli P; Palmieri V;

European journal of physical and rehabilitation medicine [Eur J Phys Rehabil Med] 2021 Sep 09.
Date of Electronic Publication: 2021 Sep 09.

Background: Although peak oxygen uptake (VO2peak) is considered the most useful index of functional capacity, it’s difficult to interpret the results of cardiopulmonary exercise testing (CPET) in individuals with spinal cord injury (SCI). In fact, VO2peak is usually normalized for total body weight, but body composition in persons with SCI largely varies depending on physical activity and time since injury, with a progressive loss of fat-free mass (FFM). This can lead to a misinterpretation of the cardiopulmonary fitness in this population.
Aim: Our study proposes a methodology of evaluation, based on bioelectrical impedance analysis (BIA), which could provide more individualized and accurate data in sportsmen with SCI.
Design: Case-control study.
Setting: Ambulatory evaluations at the Sports Medicine Unit of the Fondazione IRCSS Policlinico A. Gemelli, Rome, Italy.
Methods and Population: Comparison of data derived from BIA, echocardiography and CPET between 10 male sportsmen with complete, high SCI (Group T) and 10 able-bodied controls (Group C).
Results: Mean VO2peak, weight-normalized VO2peak, Fat-Free Mass (FFM)-normalized VO2peak and body cellular mass (BCM)-normalized values were significantly lower in Group T. At the same heart rate (on average the 55% of the maximal theoretical for age), mean of absolute VO2, weight-normalized VO2 and FFM-normalized VO2 were still significantly lower in Group T. Considering the BCM- normalized VO2, the Group T showed greater values than controls, 39.4 (7.8) vs 31.1 (8.5) ml/Kg/min.
Conclusions: Body composition is a crucial factor for properly interpreting a CPET in individuals with SCI. In particular, normalization of VO2peak values for the BCM seems the most reliable tool to assess the real functional capacity in this population.
Clinical Rehabilitation Impact: A more accurate definition of the aerobic power and functional capacity of people with SCI can improve the monitoring of rehabilitations protocols and physical exercise in this population.

 

Listing Criteria for Heart Transplant: Role of Cardiopulmonary Exercise Test and of Prognostic Scores.

Segreti A; Verolino G; Crispino SP; Agostoni P;

Heart failure clinics [Heart Fail Clin] 2021 Oct; Vol. 17 (4), pp. 635-646. Date of Electronic Publication: 2021 Jul 24.

Patients with advanced heart failure (AdHF) have a reduced quality of life and poor prognosis. A heart transplant (HT) is an effective treatment for such patients. Still, because of a shortage of donor organs, the final decision to place a patient without contraindications on the HT waiting list is based on detailed risk-benefit analysis. Cardiopulmonary exercise tests (CPETs) play a pivotal role in guiding selection in patients with AdHF considered for an HT. Furthermore, several validated multivariable predicting scores obtained through various techniques, including the CPETs, are available and part of the decision-making process for HT listing.

Exercise-induced bronchoconstriction and bronchodilation: investigating the effects of age, sex, airflow limitation and FEV 1 .

Satia I; Priel E; Al-Khazraji BK; Jones G; Freitag A; O’Byrne PM; Killian KJ;

The European respiratory journal [Eur Respir J] 2021 Aug 26; Vol. 58 (2).
Date of Electronic Publication: 2021 Aug 26 (Print Publication: 2021).

Exercise-induced bronchoconstriction (EIBc) is a recognised response to exercise in asthmatic subjects and athletes but is less well understood in an unselected broad population. Exercise-induced bronchodilation (EIBd) has received even less attention. The objective of this study was to investigate the effects of age, sex, forced expiratory volume in 1 s (FEV 1 ) and airflow limitation (FEV 1 /forced vital capacity (FVC) <0.7) on the prevalence of EIBc and EIBd.This was a retrospective study based on incremental cardiopulmonary exercise testing on cycle ergometry to symptom limitation performed between 1988 and 2012. FEV 1 was measured before and 10 min after exercise. EIBc was defined as a percentage fall in FEV 1 post-exercise below the 5th percentile, while EIBd was defined as a percentage increase in FEV 1 above the 95th percentile.35 258 subjects aged 6-95 years were included in the study (mean age 53 years, 60% male) and 10.3% had airflow limitation (FEV 1 /FVC <0.7). The lowest 5% of subjects demonstrated a ≥7.6% fall in FEV 1 post-exercise (EIBc), while the highest 5% demonstrated a >11% increase in FEV 1 post-exercise (EIBd). The probability of both EIBc and EIBd increased with age and was highest in females across all ages (OR 1.76, 95% CI 1.60-1.94; p<0.0001). The probability of EIBc increased as FEV 1 % pred declined (<40%: OR 4.38, 95% CI 3.04-6.31; p<0.0001), with a >2-fold increased likelihood in females (OR 2.31, 95% CI 1.71-3.11; p<0.0001), with a trend with airflow limitation (p=0.06). The probability of EIBd increased as FEV 1 % pred declined, in the presence of airflow limitation (OR 1.55, 95% CI 1.24-1.95; p=0.0001), but sex had no effect.EIBc and EIBd can be demonstrated at the population level, and are influenced by age, sex, FEV 1 % pred and airflow limitation.

Preservation of Cardiac Reserve and Cardiorespiratory Fitness in Patients With Acute De Novo Versus Acute on Chronic Heart Failure With Reduced Ejection Fraction.

Del Buono MG; Mihalick V;Damonte JI; Billingsley H; Kadayira D;Ho AC;Talasaz A; Carbone S; Markley R;Turlington J; Lu J; Federmann E; Arena R; Van Tassell B; Abbate A;Canada JM;

The American journal of cardiology [Am J Cardiol] 2021 Aug 28. Date of Electronic Publication: 2021 Aug 28.

There is limited understanding on the potential differences in the pathophysiology between de novo heart failure with reduced ejection fraction (HFrEF) and acute on chronic HFrEF. The aim of this study was to assess differences in cardiorespiratory fitness (CRF) parameters between de novo heart failure and acute on chronic HFrEF using cardiopulmonary exercise testing (CPX). We retrospectively analyzed CPX data measured within 2 weeks of discharge following acute hospitalization for HFrEF. Data are reported as median and interquartile range or frequency and percentage (%). We included 102 patients: 32 (31%) women, 81 (79%) black, 57 (51 to 64) years of age, BMI of 34 (29 to 39) Kg/m 2 . Of these, 26 (25%) had de novo HFrEF and 76 (75%) had acute on chronic HFrEF. When compared with acute on chronic, patients with de novo HFrEF had a significantly higher peak oxygen consumption (VO 2 ) (16.5 [12.2 to 19.4] vs 12.8 [10.1 to 15.3] ml·kg -1 ·min -1 , p <0.001), %-predicted peak VO 2 (58% [51 to 75] vs 49% [42 to 59]) p = 0.012), peak heart rate (134 [117 to 147] vs 117 [104 to 136] beats/min, p = 0.004), peak oxygen pulse (12.2 [10.5 to 15.5] vs 9.9 [8.0 to 13.1] ml/beat, p = 0.022) and circulatory power (2,823 [1,973 to 3,299] vs 1,902 [1,372 to 2,512] mm Hg·ml·kg -1 ·min -1 , p = 0.002). No significant difference in resting left ventricular ejection fraction was found between groups. In conclusion, patients with de novo HFrEF have better CRF parameters than those with acute on chronic HFrEF. These differences are not explained by resting left ventricular systolic function but may be related to greater preservation in cardiac reserve during exercise in de novo HFrEF patients.