Training according to CPET results

Axel Preßler

Lehrstuhl und Poliklinik für
Prävention, Rehabilitation und Sportmedizin
Klinikum rechts der Isar
Technische Universität München

info@sport.med.tum.de
www.sport.med.tum.de
Clinical range of exercise prescription
Clinical range of exercise prescription

Why do we need EXERCISE PRESCRIPTION?

- Improving exercise capacity
- Improving quality of life
- Improving clinical outcome
- Preparing treatment
- Ensuring safe exercise
- Increasing adherence
- Supporting behaviour change

ATHLETE

Improving performance

PATIENT
CPET-variables for exercise prescription

Heart rate or \(\text{VO}_2 \) reserve:
\(((\text{Max} - \text{Rest}) \times \%) + \text{Rest})\)

- \(\text{VO}_2\text{peak} \)
- \(\text{HR}_{\text{max}} \)
- Borg scale
- Thresholds
Common intensities for exercise

<table>
<thead>
<tr>
<th>Variable</th>
<th>Low</th>
<th>Moderate</th>
<th>Vigourous</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRmax</td>
<td>< 50%</td>
<td>50-70%</td>
<td>70-85%</td>
<td>85-95%</td>
</tr>
<tr>
<td>VO₂peak</td>
<td>< 40%</td>
<td>40-60%</td>
<td>60-80%</td>
<td>80-90%</td>
</tr>
<tr>
<td>HRR</td>
<td>< 40%</td>
<td>40-60%</td>
<td>60-80%</td>
<td>80-90%</td>
</tr>
<tr>
<td>VO₂R</td>
<td>< 40%</td>
<td>40-60%</td>
<td>60-80%</td>
<td>80-90%</td>
</tr>
<tr>
<td>Thresholds</td>
<td>< VT1</td>
<td>VT1 – VT2</td>
<td>=> VT2</td>
<td></td>
</tr>
</tbody>
</table>
VO$_2$peak for exercise prescription

Advantages:

- Most common, internationally recognized exercise parameter used in cardiovascular sports medicine research
- Gold standard for assessment of exercise capacity
- Reflects capacity of whole „system“
- Is thus directly related to physiological exercise capacity
- Can easily be translated to MET [-hours]
- Can be compared to other trials

“VO$_2$peak is defined as the highest VO$_2$, averaged over a 20 to 30-s period, achieved at presumed maximal effort during an incremental exercise test”

“\(\dot{V}O_2 \text{peak} \) is defined as the highest \(\dot{V}O_2 \), averaged over a 20 to 30-s period, achieved at presumed maximal effort during an incremental exercise test”

SpiroErgometrie - Tabelle

<table>
<thead>
<tr>
<th>Zeit MM:SS</th>
<th>Last W</th>
<th>HR b/min</th>
<th>BF 1/min</th>
<th>VT 1</th>
<th>VE 1/min</th>
<th>(\dot{V}O_2) 1/min</th>
<th>(\dot{V}O_2)/kg 1/min</th>
<th>O2Puls 1/min</th>
<th>VCO2 1/min</th>
<th>RER</th>
<th>EQCO2</th>
<th>EQO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ruhe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.76</td>
<td>3.32</td>
<td>4.54</td>
<td>5.09</td>
<td>5.57</td>
<td>0.39</td>
<td>0.89</td>
</tr>
</tbody>
</table>

Prescribing moderate exercise (50-60%)

- 71-75 bpm
- 7.0 – 8.5 ml/kg/min
- 14.2 ml/kg/min
VO$_2$peak for exercise prescription

Pitfalls:

- VO$_2$peak does in most cases not represent true maximum capacity
- May be influenced by medication
- In subjects with low exercise capacity: recommended exercise intensities may be lower than resting value!
- Is dependant on a successful CPET
- Must be continuously updated / adjusted
- Not practical for monitoring exercise
- Limited in oscillatory ventilation
HR_{max} for exercise prescription

Advantages:
- Easy to determine and read out
- May also roughly be estimated by formulas (not my recommendation…)
- Appropriate for exercise prescription in healthy individuals

Pitfalls:
- Strongly influenced by medication or disease (chronotropic incompetence)
- Limited in arrhythmias
- Not linearly correlated with VO\(_2\)
- Requires full exhaustion
- In subjects with low exercise capacity: recommended exercise intensities may be lower than resting value!

Limitations are partly overcome by using „reserve models“ (HRR)
Prescribing moderate exercise (50-60%)

SpiroErgometrie - Tabelle

<table>
<thead>
<tr>
<th>Zeit MM:SS</th>
<th>Last W</th>
<th>HR b/min</th>
<th>BF 1/min</th>
<th>VT l</th>
<th>VE 1/min</th>
<th>VO2 1/min</th>
<th>VO2/kg 1/min</th>
<th>O2Puls ml/beat</th>
<th>VCO2 1/min</th>
<th>RER</th>
<th>EQCO2</th>
<th>EQO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ruhe</td>
<td></td>
</tr>
<tr>
<td>1:00</td>
<td>0</td>
<td>48</td>
<td>9</td>
<td>2.01</td>
<td>18.0</td>
<td>0.32</td>
<td>3.77</td>
<td>7</td>
<td>0.33</td>
<td>1.03</td>
<td>51</td>
<td>53</td>
</tr>
<tr>
<td>1:56</td>
<td>0</td>
<td>62</td>
<td>9</td>
<td>1.93</td>
<td>18.3</td>
<td>0.28</td>
<td>3.30</td>
<td>5</td>
<td>0.31</td>
<td>1.10</td>
<td>56</td>
<td>61</td>
</tr>
<tr>
<td>Belastung</td>
<td></td>
</tr>
<tr>
<td>0:10</td>
<td>20</td>
<td>62</td>
<td>9</td>
<td>1.75</td>
<td>16.6</td>
<td>0.27</td>
<td>3.17</td>
<td>4</td>
<td>0.29</td>
<td>1.07</td>
<td>54</td>
<td>58</td>
</tr>
<tr>
<td>0:20</td>
<td>20</td>
<td>62</td>
<td>9</td>
<td>1.77</td>
<td>16.4</td>
<td>0.27</td>
<td>3.14</td>
<td>4</td>
<td>0.29</td>
<td>1.06</td>
<td>54</td>
<td>57</td>
</tr>
<tr>
<td>0:30</td>
<td>20</td>
<td>62</td>
<td>9</td>
<td>1.67</td>
<td>15.5</td>
<td>0.25</td>
<td>2.93</td>
<td>4</td>
<td>0.26</td>
<td>1.05</td>
<td>55</td>
<td>58</td>
</tr>
<tr>
<td>0:40</td>
<td>20</td>
<td>63</td>
<td>9</td>
<td>1.54</td>
<td>14.5</td>
<td>0.25</td>
<td>2.93</td>
<td>4</td>
<td>0.25</td>
<td>0.99</td>
<td>54</td>
<td>54</td>
</tr>
<tr>
<td>0:50</td>
<td>20</td>
<td>64</td>
<td>10</td>
<td>1.62</td>
<td>15.9</td>
<td>0.32</td>
<td>3.76</td>
<td>5</td>
<td>0.30</td>
<td>0.92</td>
<td>50</td>
<td>46</td>
</tr>
<tr>
<td>1:00</td>
<td>20</td>
<td>64</td>
<td>10</td>
<td>1.69</td>
<td>18.0</td>
<td>0.39</td>
<td>4.54</td>
<td>6</td>
<td>0.35</td>
<td>0.89</td>
<td>49</td>
<td>43</td>
</tr>
<tr>
<td>1:10</td>
<td>30</td>
<td>68</td>
<td>13</td>
<td>1.74</td>
<td>20.3</td>
<td>0.44</td>
<td>5.09</td>
<td>7</td>
<td>0.39</td>
<td>0.89</td>
<td>49</td>
<td>44</td>
</tr>
<tr>
<td>1:20</td>
<td>30</td>
<td>68</td>
<td>13</td>
<td>1.79</td>
<td>22.4</td>
<td>0.48</td>
<td>5.57</td>
<td>7</td>
<td>0.43</td>
<td>0.89</td>
<td>49</td>
<td>43</td>
</tr>
<tr>
<td>1:30</td>
<td>30</td>
<td>67</td>
<td>13</td>
<td>1.89</td>
<td>23.9</td>
<td>0.52</td>
<td>6.02</td>
<td>8</td>
<td>0.46</td>
<td>0.89</td>
<td>49</td>
<td>44</td>
</tr>
<tr>
<td>1:40</td>
<td>30</td>
<td>68</td>
<td>13</td>
<td>1.76</td>
<td>23.5</td>
<td>0.52</td>
<td>6.03</td>
<td>8</td>
<td>0.46</td>
<td>0.89</td>
<td>49</td>
<td>43</td>
</tr>
<tr>
<td>1:50</td>
<td>30</td>
<td>69</td>
<td>14</td>
<td>1.61</td>
<td>22.9</td>
<td>0.54</td>
<td>6.23</td>
<td>8</td>
<td>0.45</td>
<td>0.85</td>
<td>47</td>
<td>40</td>
</tr>
<tr>
<td>2:00</td>
<td>30</td>
<td>70</td>
<td>16</td>
<td>1.42</td>
<td>22.2</td>
<td>0.53</td>
<td>6.17</td>
<td>8</td>
<td>0.43</td>
<td>0.81</td>
<td>48</td>
<td>39</td>
</tr>
<tr>
<td>2:10</td>
<td>40</td>
<td>71</td>
<td>17</td>
<td>1.24</td>
<td>21.3</td>
<td>0.53</td>
<td>6.13</td>
<td>7</td>
<td>0.40</td>
<td>0.75</td>
<td>49</td>
<td>37</td>
</tr>
<tr>
<td>2:20</td>
<td>40</td>
<td>71</td>
<td>17</td>
<td>1.14</td>
<td>18.8</td>
<td>0.48</td>
<td>5.50</td>
<td>7</td>
<td>0.35</td>
<td>0.73</td>
<td>49</td>
<td>36</td>
</tr>
<tr>
<td>2:30</td>
<td>40</td>
<td>71</td>
<td>17</td>
<td>1.26</td>
<td>19.7</td>
<td>0.54</td>
<td>6.32</td>
<td>8</td>
<td>0.38</td>
<td>0.70</td>
<td>47</td>
<td>33</td>
</tr>
<tr>
<td>2:40</td>
<td>40</td>
<td>72</td>
<td>15</td>
<td>1.55</td>
<td>22.6</td>
<td>0.64</td>
<td>7.40</td>
<td>9</td>
<td>0.46</td>
<td>0.72</td>
<td>46</td>
<td>33</td>
</tr>
<tr>
<td>2:50</td>
<td>40</td>
<td>72</td>
<td>15</td>
<td>1.87</td>
<td>25.5</td>
<td>0.71</td>
<td>8.24</td>
<td>10</td>
<td>0.53</td>
<td>0.75</td>
<td>45</td>
<td>34</td>
</tr>
<tr>
<td>3:00</td>
<td>40</td>
<td>73</td>
<td>13</td>
<td>1.98</td>
<td>25.8</td>
<td>0.71</td>
<td>8.23</td>
<td>10</td>
<td>0.56</td>
<td>0.78</td>
<td>44</td>
<td>35</td>
</tr>
<tr>
<td>3:10</td>
<td>50</td>
<td>74</td>
<td>13</td>
<td>2.13</td>
<td>26.9</td>
<td>0.75</td>
<td>8.74</td>
<td>10</td>
<td>0.60</td>
<td>0.79</td>
<td>43</td>
<td>34</td>
</tr>
<tr>
<td>3:20</td>
<td>50</td>
<td>75</td>
<td>13</td>
<td>1.94</td>
<td>26.1</td>
<td>0.72</td>
<td>8.32</td>
<td>10</td>
<td>0.58</td>
<td>0.81</td>
<td>43</td>
<td>35</td>
</tr>
<tr>
<td>3:30</td>
<td>50</td>
<td>74</td>
<td>13</td>
<td>1.72</td>
<td>25.0</td>
<td>0.71</td>
<td>8.20</td>
<td>10</td>
<td>0.56</td>
<td>0.79</td>
<td>42</td>
<td>33</td>
</tr>
<tr>
<td>3:40</td>
<td>50</td>
<td>74</td>
<td>13</td>
<td>1.57</td>
<td>25.4</td>
<td>0.73</td>
<td>8.47</td>
<td>10</td>
<td>0.57</td>
<td>0.78</td>
<td>42</td>
<td>33</td>
</tr>
<tr>
<td>3:50</td>
<td>50</td>
<td>74</td>
<td>13</td>
<td>1.30</td>
<td>24.5</td>
<td>0.69</td>
<td>8.06</td>
<td>9</td>
<td>0.52</td>
<td>0.76</td>
<td>43</td>
<td>33</td>
</tr>
<tr>
<td>4:00</td>
<td>50</td>
<td>74</td>
<td>13</td>
<td>1.43</td>
<td>26.4</td>
<td>0.74</td>
<td>8.57</td>
<td>10</td>
<td>0.56</td>
<td>0.76</td>
<td>44</td>
<td>33</td>
</tr>
<tr>
<td>4:10</td>
<td>60</td>
<td>74</td>
<td>18</td>
<td>1.55</td>
<td>27.2</td>
<td>0.75</td>
<td>8.76</td>
<td>10</td>
<td>0.59</td>
<td>0.78</td>
<td>43</td>
<td>34</td>
</tr>
<tr>
<td>5:00</td>
<td>100</td>
<td>91</td>
<td>22</td>
<td>2.23</td>
<td>49.8</td>
<td>1.20</td>
<td>13.95</td>
<td>13</td>
<td>1.21</td>
<td>1.01</td>
<td>39</td>
<td>40</td>
</tr>
<tr>
<td>5:30</td>
<td>100</td>
<td>95</td>
<td>24</td>
<td>2.28</td>
<td>53.5</td>
<td>1.23</td>
<td>14.36</td>
<td>13</td>
<td>1.25</td>
<td>1.01</td>
<td>41</td>
<td>41</td>
</tr>
<tr>
<td>6:00</td>
<td>100</td>
<td>96</td>
<td>25</td>
<td>2.02</td>
<td>51.4</td>
<td>1.20</td>
<td>13.91</td>
<td>13</td>
<td>1.24</td>
<td>1.04</td>
<td>39</td>
<td>41</td>
</tr>
</tbody>
</table>

- **58 – 67 bpm**
- **71 – 75 bpm**
- **7.1 – 8.5 ml/kg/min**
- **96 bpm**
- **14.2 ml/kg/min**
Prescribing moderate exercise (50-60%)

(96-48) x 50% + 48 = 72
(96-48) x 60% + 48 = 77
Borg Scale for exercise prescription

6 No exertion at all
7 Extremely light
8 Very light
9 Light
10 Somewhat hard
11 Hard (heavy)
12
13 Very hard
14
15 Extremely hard
16
17 Maximal exertion

<table>
<thead>
<tr>
<th>Borg CR10 scale</th>
<th>Borg RPE scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Just noticeable</td>
<td></td>
</tr>
<tr>
<td>Light</td>
<td></td>
</tr>
<tr>
<td>Heavy</td>
<td></td>
</tr>
<tr>
<td>Highest possible</td>
<td></td>
</tr>
</tbody>
</table>

Borg RPE scale
Borg Scale: association with metabolism

n = 2560 patients (healthy and diseased)

Borg Scale for exercise prescription

Aerobic

- 6: No exertion at all
- 7: Extremely light
- 8: Very light
- 9: Light
- 10: Somewhat hard

Aerobic - anaerobic

- 11: Light
- 12: Somewhat hard
- 13: Somewhat hard
- 14: Hard (heavy)
- 15: Very hard
- 16: Extremely hard
- 17: Extremely hard
- 18: Maximal exertion

Anaerobic

- 19: Extremely hard
- 20: Maximal exertion

LT1: 4 mmol

Borg Scale for exercise prescription

Advantages:
• Easy to determine
• Overcomes limitations in subjects with low exercise capacity
• Independant of medication
• Does not require full exhaustion

Pitfalls:
• May strongly over- or underestimate true intensity in some
• Preferable for monitoring rather than prescribing exercise

Thresholds for prescribing exercise

Advantages:
• Do not require full exhaustion
• Directly reflect energy supply during exercise
• Allow for more precise, individualized exercise recommendations
• Independant of medication

Pitfalls:
• Require correct determination of thresholds, which may be challenging in some
• Data on training effects in patient populations is scarce
Thresholds for prescribing exercise

- **Low**
 - Regeneration / compensation:
 - Exercise for „recovery“ or long-distance training
 - Stabilizing rather than increasing performance
 - No threshold shift
 - Continuous exercise

- **Moderate to vigorous**
 - Aerobic performance I & II:
 - Exercise for improving basic aerobic fitness
 - Shift of thresholds to higher intensities
 - Either as continuous (I) or interval-based exercise (II)

- **High**
 - Anaerobic, maximal capacity:
 - Exercise for improving peak performance
 - Usually no relevant threshold shift
 - Increasing „lactate tolerance“
 - Performed as interval exercise

![Graph showing biological parameters over time](image-url)
Prescribing high-intensity interval training

SpiroErgometrie - Tabelle

<table>
<thead>
<tr>
<th>Zeit MM:SS</th>
<th>Last W</th>
<th>HR b/min</th>
<th>BF l/min</th>
<th>VT l/min</th>
<th>VE l/min</th>
<th>VO2 l/min</th>
<th>VO2/kg ml/min/kg</th>
<th>O2Puls ml/beat</th>
<th>VCO2 l/min</th>
<th>RER</th>
<th>EQCO2</th>
<th>EQO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ruhe</td>
<td></td>
</tr>
<tr>
<td>1:00</td>
<td>0</td>
<td>65</td>
<td>16</td>
<td>0.69</td>
<td>11.2</td>
<td>0.34</td>
<td>4.20</td>
<td>5</td>
<td>0.28</td>
<td>0.84</td>
<td>34</td>
<td>29</td>
</tr>
<tr>
<td>1:40</td>
<td>0</td>
<td>64</td>
<td>18</td>
<td>0.77</td>
<td>13.8</td>
<td>0.52</td>
<td>6.46</td>
<td>8</td>
<td>0.40</td>
<td>0.78</td>
<td>30</td>
<td>23</td>
</tr>
</tbody>
</table>

- **50-60% VO₂peak**
- **80-90% VO₂peak**
- **VO₂peak**
Training protocols

Intensity, % HR_{max}

- bis 30 sec
- 4 min
- 4 min
- 4 min
- 4 min

Pressler A, Herzmedizin 2013;2:24
Physiologie during intervals
Monitoring interval exercise
Always monitor and adjust intensities!
Summary and conclusion

• In patient populations and cardiac rehabilitation, CPET with determination of VO$_2$peak is the key component of prescribing exercise at different intensities

• Threshold concepts are less well established in rehabilitation but probably allow for a more precise, individualized recommendation (more data needed)

• Concepts based on maximal heart rate are limited by medication or the disease itself and should not be used in patient populations

• The Borg Scale is a helpful tool to calculate and monitor intensities that cannot be determined by objective means

• Exercise intensities need monitoring and regular adjustment particular in research settings
Kontakt

Axel Preßler
Lehrstuhl und Poliklinik für Prävention, Rehabilitation und Sportmedizin
Klinikum rechts der Isar
Technische Universität München

Georg-Brauchle-Ring 56-58 (Campus C)
80992 München

pressler@sport.med.tum.de
www.sport.med.tum.de