Effects of sprint interval training on cardiorespiratory fitness while in a hyperbaric oxygen environment.

DeCato TW; Bradley SM; Wilson EL; Harlan NP; Villela MA; Weaver LK; Hegewald MJ;

Undersea & Hyperbaric Medicine: Journal Of The Undersea And Hyperbaric Medical Society, Inc [Undersea Hyperb Med] 2019 Mar-Apr-May; Vol. 46, pp. 117-124.

Objectives: Hyperbaric oxygen (HBO2) exposure may enhance cardiorespiratory fitness. Exercise training and HBO2 exposure stimulate mitochondrial biogenesis, increase capillary density, and induce adaptive antioxidant mechanisms. We hypothesized that an exercise regimen of sprint interval training (SIT) while breathing HBO2 would lead to a greater improvement in exercise performance compared to the same training breathing ambient air.
Methods: Healthy long-term intermediate-altitude residents, ages 20-39 years, with normal spirometry and cardiorespiratory fitness were randomized to two groups: one performing six sessions of a SIT regimen over two weeks in a hyperbaric chamber (1.4 ATA [141.9 kPa], FiO2=1.0); the other performing under ambient pressure conditions (0.85 ATA [86.1 kPa], FiO2=0.21). Training effect was evaluated by comparing incremental cycle ergometry cardiopulmonary exercise testing before and after the training regimen. The primary outcome measure was peak oxygen consumption (V̇O2), while secondary outcomes included additional exercise parameters. The effect of study group on exercise parameters was assessed using two-factor repeated measures ANOVA.
Results: Of 58 participants randomized, 49 completed the training program and all cardiopulmonary exercise tests (n=23 HBO2, n=26 ambient). Both groups experienced an increase in peak V̇O2: 8.1% HBO2 and 7.1% ambient; the differences were not significant (p=0.50). Secondary parameters of peak work rate and peak V̇E experienced a significantly higher change in the HBO2 group compared to the ambient group (p=0.05 and p=0.03, respectively).
Conclusion: Cardiorespiratory fitness improved after a two-week SIT regimen, but improvement in peak V̇O2 was not significantly different between ambient and HBO2 groups.