Right ventricular systolic dysfunction at rest is not related to decreased exercise capacity in patients with a systemic right ventricle.

Helsen F, De Meester P, Van De Bruaene A, Gabriels C, Santens B,
Claeys M, Claessen G, Goetschalckx K, Buys R, Gewillig M, Troost
E, Voigt JU, Claus P, Bogaert J, Budts W

Int J Cardiol. 2018 Mar 8. pii: S0167-5273(17)37403-X. doi:
10.1016/j.ijcard.2018.03.029. [Epub ahead of print]

BACKGROUND: To evaluate the relationship between right ventricular (RV) systolic
dysfunction at rest and reduced exercise capacity in patients with a systemic RV
(sRV).
METHODS: All patients with congenitally corrected transposition of the great
arteries (ccTGA) or complete TGA after atrial switch (TGA-Mustard/Senning)
followed in our institution between July 2011 and September 2017 who underwent
cardiac imaging within a six-month time period of cardiopulmonary exercise
testing (CPET) were analyzed. We assessed sRV systolic function with TAPSE and
fractional area change on echocardiogram and, if possible, with ejection
fraction, global longitudinal and circumferential strain on cardiac magnetic
resonance (CMR) imaging.
RESULTS: We studied 105 patients with an sRV (median age 34 [IQR 28-42] years,
29% ccTGA and 71% TGA-Mustard/Senning) of which 39% had either a pacemaker
(n = 17), Eisenmenger physiology (n = 6), severe systemic atrioventricular valve
regurgitation (n = 14), or peak exercise arterial oxygen saturation < 92%
(n = 17). Most patients were asymptomatic or mildly symptomatic (NYHA class
I/II/III in 71/23/6%). Sixty-four percent had evidence of moderate or severe sRV
dysfunction on cardiac imaging. Mean peak oxygen uptake (pVO2) was
24.1 ± 7.4 mL/kg/min, corresponding to a percentage of predicted pVO2 (%ppVO2) of
69 ± 17%. No parameter of sRV systolic function as evaluated on echocardiography
(n = 105) or CMR (n = 46) was correlated with the %ppVO2, even after adjusting
for associated cardiac defects or pacemakers.
CONCLUSIONS: In adults with an sRV, there is no relation between
echocardiographic or CMR-derived sRV systolic function parameters at rest and
peak oxygen uptake. Exercise imaging may be superior to evaluate whether sRV
contractility limits exercise capacity.