Weberruss H, Maucher J, Oberhoffer R, Müller J.
Eur J Appl Physiol. 2018 Jan;118(1):205-211. doi: 10.1007/s00421-017-3762-2. Epub
2017 Nov 15.
OBJECTIVE: The body’s adaptation to physical exercise is modulated by sympathetic
and parasympathetic (vagal) branches of the autonomic nervous system (ANS). Heart
rate variability (HRV), the beat-to-beat variation of the heart, is a proxy
measure for ANS activity, whereas blood pressure (BP) is an indicator for
cardiovascular function. Impaired vagal activity and lower BP is already
described after exercise. However, inconsistent results exist about how long
vagal recovery takes and how long post-exercise hypotension persists. Therefore,
the aim of this study was to assess HRV and BP 1 h after maximal cardiopulmonary
exercise testing (CPET).
PATIENTS AND METHODS: HRV (Polar RS800CX), peripheral and central BP
(Mobil-O-Graph®) were prospectively studied in 107 healthy volunteers (47 female,
median age 29.0 years) in supine position, before and 60 min after maximal CPET.
RESULTS: One hour after terminating CPET measures of HRV were still impaired and
post-exercise BP was significantly reduced suggesting an improved vascular
function compared to pre levels. HRV parameters post-exercise were 34.7% (RMSSD),
67.2% (pNN50), 57.2% (HF), and 42.7% (LF) lower compared to pre-exercise levels
(for all p < 0.001). Median reduction in BP was 5 mmHg for systolic BP
(p < 0.001), and 4 mmHg for diastolic BP (p = 0.016) and central systolic
post-exercise (p = 0.005).
CONCLUSIONS: One hour after terminating strenuous exercise, autonomic nervous
regulation seems to be postponed which is reflected in reduced HRV, whereas the
early recovery of the vasculature, post-exercise hypotension, is still preserved
over the recovery period of 1 h.