Dalla Vecchia LA; Barbic F; De Maria B; Cozzolino D; Gatti R; Dipaola F; Brunetta E; Zamuner AR; Porta A; Furlan R;
Plos One [PLoS One] 2019 May 07; Vol. 14 (5), pp. e0216567.
Regular exercise is recommended to improve the cardiovascular risk profile. However, there is growing evidence that extreme volumes and intensity of long-term exertion may increase the risk of acute cardiac events. The aim of this study is to investigate the after-effects of regular, strenuous physical training on the cardiovascular neural regulation in a group of amateur triathletes compared to age-matched sedentary controls. We enrolled 11 non-elite triathletes (4 women, age 24±4 years), who had refrained from exercise for 72 hours, and 11 age-matched healthy non-athletes (3 women, age 25±2 years). Comprehensive echocardiographic and cardiopulmonary exercise tests were performed at baseline. Electrocardiogram, non-invasive blood pressure, respiratory activity, and muscle sympathetic nerve activity (MSNA) were continuously recorded in a supine position (REST) and during an incremental 15° step-wise head-up tilt test up to 75° (TILT). Blood samples were collected for determination of stress mediators. Autoregressive spectral analysis provided the indices of the cardiac sympathetic (LFRR) and vagal (HFRR) activity, the vascular sympathetic control (LFSAP), and the cardiac sympatho-vagal modulation (LF/HF). Compared to controls, triathletes were characterized by greater LFRR, LF/HF ratio, LFSAP, MSNA, and lower HFRR at REST and during TILT, i.e. greater overall cardiovascular sympathetic modulation together with lower cardiac vagal activity. Cortisol and adrenocorticotropic hormone concentrations were also higher in triathletes. In conclusion, triathletes were characterized by signs of sustained cardiovascular sympathetic overactivity. This might represent a risk factor for future cardiovascular events, given the known association between chronic excessive sympathetic activity and increased cardiovascular risk