Zafar A; Hall M;
Publisher: Wiley-Liss Country of Publication: United States NLM ID: 8510590 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1099-0496 (Electronic) Linking ISSN: 10990496 NLM ISO Abbreviation: Pediatr Pulmonol Subsets: MEDLINE
Background: Primary ciliary dyskinesia is a rare genetic disorder characterized by recurrent sinopulmonary infections and worsening obstructive lung disease. Kidney and brain involvement is less common and is associated with overlapping ciliopathies/syndromes. The lungs are impacted early in the course of the disease, so it is vital to monitor lung function and recognize any decline by doing appropriate lung function tests. This systematic review compares different lung function tests and analyzes which one becomes abnormal earlier in the disease.
Methods: A systematic review was conducted following the methodology in the “Cochrane Handbook on Systematic Reviews for diagnostic tests.” The Preferred Reporting Items for Systematic Review and Meta-Analyses were used to report the results. The risk of bias assessment was done using “The Cochrane Handbook for Systematic Reviews tool for interventional studies.” A meta-analysis was not performed due to the small sample size. All studies were analyzed by using Joanna Briggs Institute’s critical appraisal tool.
Results: After screening for the duplication of results and applying inclusion and exclusion criteria, 14 studies were assessed by reading the full texts. Out of these, eight were finally included in this systematic review. The total sample size from all studies was 165, including 80 males. All the studies used spirometry as a lung function test, whereas multiple breath washout was used in five studies. Other tests used for comparison were computed tomography (CT), magnetic resonance imaging (MRI), cardiopulmonary exercise testing, 6-min walk test, DLCO, maximal inspiratory pressure, maximal expiratory pressure, and PaO 2 . Lung clearance index (LCI) by multiple breath washout had a stronger association with the structural changes on CT/MRI than spirometry indices like forced expiratory volume in 1 s (FEV1) and forced expiratory flow at 25% to 75% of lung volume (FEF 25-75).
Conclusions: Based on the evidence from this systematic review, LCI becomes abnormal earlier than FEV1 or FEF 25-75 and positively correlates with the findings on high-resolution CT. It has limitations like the lack of reference values and a complex technique to perform the test.