Author Archives: Paul Older

Assessing cardiorespiratory fitness in clinical and community settings: Lessons and advancements in the 100th year anniversary of VO 2max

Harber MP; Clinical Exercise Physiology, Chicago, IL, USA
Myers J; Bonikowske AR; Muntaner-Mas A; Molina-Garcia P; Arena R; Healthy Ortega FB;

Progress in cardiovascular diseases [Prog Cardiovasc Dis] 2024 Feb 26.
Date of Electronic Publication: 2024 Feb 26.

Cardiorespiratory fitness (CRF) is a well-established biomarker that has applications to all adults across the health and disease spectrum. Despite the overwhelming evidence supporting the prognostic utility of CRF, it remains vastly underutilized. CRF is optimally measured via cardiopulmonary exercise testing which may not be feasible to implement on a large scale. Therefore, it is prudent to develop ways to accurately estimate CRF that can be applied in clinical and community settings. As such, several prediction equations incorporating non-exercise information that is readily available from routine clinical encounters have been developed that provide an adequate reflection of CRF that could be implemented to raise awareness of the importance of CRF. Further, technological advances in smartphone apps and consumer-grade wearables have demonstrated promise to provide reasonable estimates of CRF that are widely available, which could enhance the utilization of CRF in both clinical and community settings.

Using cardiorespiratory fitness assessment to identify pathophysiology in long COVID – Best practice approaches.

Faghy MA; University of Derby, Derby, UK;  & Sheffield Hallam University, Sheffield, UK. &  Illinois Chicago, Chicago, IL, USA
Dalton C; Duncan R; Arena R; Ashton REM;

Progress in cardiovascular diseases [Prog Cardiovasc Dis] 2024 Feb 26.
Date of Electronic Publication: 2024 Feb 26.

Cardio-respiratory fitness (CRF) is well-established in the clinical domains as an integrative measure of the body’s physiological capability and capacity to transport and utilise oxygen during controlled bouts of physical exertion. Long COVID is associated with >200 different symptoms and is estimated to affect ~150 million people worldwide. The most widely reported impact is reduced quality of life and functional status due to highly sensitive and cyclical symptoms that manifest and are augmented following exposure to physical, emotional, orthostatic, and cognitive stimuli, more commonly known as post-exertional symptom exacerbation (PESE) which prevents millions from engaging in routine daily activities. The use of cardiopulmonary exercise testing (CPET) is commonplace in the assessment of integrated physiology; CPET will undoubtedly play an integral role in furthering the pathophysiology and mechanistic knowledge that will inform bespoke Long COVID treatment and management strategies. An inherent risk of previous attempts to utilise CPET protocols in patients with chronic disease is that these are compounded by PESE and have induced a worsening of symptoms for patients that can last for days or weeks. To do this effectively and to meet the global need, the complex multi-system pathophysiology of Long COVID must be considered to ensure the design and implementation of research that is both safe for participants and capable of advancing mechanistic understanding.

mPAP/CO Slope and Oxygen Uptake Add Prognostic Value in Aortic Stenosis.

Hoedemakers S; Departments of Cardiology, Jessa Hospital, Hasselt, Belgium.
Pugliese NR; Stassen J; Vanoppen A; Claessens J; Gojevic T; Bekhuis Y; Falter M; Moura Ferreira S; Dhont S; De Biase N; Del Punta L; Di Fiore V; De Carlo M; Giannini C; Colli A; Cardiac, Dulgheru RE; Yilmaz A; Claessen G; Bertrand P;Droogmans S; Lancellotti P; Cosyns B; Verbrugge FH; Herbots L; Masi S; Verwerft J;

Circulation [Circulation] 2024 Feb 27.
Date of Electronic Publication: 2024 Feb 27.

Background: Recent guidelines redefined exercise pulmonary hypertension as a mean pulmonary artery pressure/cardiac output (mPAP/CO) slope >3 mm Hg·L -1 ·min -1 . A peak systolic pulmonary artery pressure >60 mm Hg during exercise has been associated with an increased risk of cardiovascular death, heart failure rehospitalization, and aortic valve replacement in aortic valve stenosis. The prognostic value of the mPAP/CO slope in aortic valve stenosis remains unknown.
Methods: In this prospective cohort study, consecutive patients (n=143; age, 73±11 years) with an aortic valve area ≤1.5 cm 2 underwent cardiopulmonary exercise testing with echocardiography. They were subsequently evaluated for the occurrence of cardiovascular events (ie, cardiovascular death, heart failure hospitalization, new-onset atrial fibrillation, and aortic valve replacement) during a follow-up period of 1 year. Findings were externally validated (validation cohort, n=141).
Results: One cardiovascular death, 32 aortic valve replacements, 9 new-onset atrial fibrillation episodes, and 4 heart failure hospitalizations occurred in the derivation cohort, whereas 5 cardiovascular deaths, 32 aortic valve replacements, 1 new-onset atrial fibrillation episode, and 10 heart failure hospitalizations were observed in the validation cohort. Peak aortic velocity (odds ratio [OR] per SD, 1.48; P =0.036), indexed left atrial volume (OR per SD, 2.15; P =0.001), E/e’ at rest (OR per SD, 1.61; P =0.012), mPAP/CO slope (OR per SD, 2.01; P =0.002), and age-, sex-, and height-based predicted peak exercise oxygen uptake (OR per SD, 0.59; P =0.007) were independently associated with cardiovascular events at 1 year, whereas peak systolic pulmonary artery pressure was not (OR per SD, 1.28; P =0.219). Peak Vo 2 (percent) and mPAP/CO slope provided incremental prognostic value in addition to indexed left atrial volume and aortic valve area ( P <0.001). These results were confirmed in the validation cohort.
Conclusions: In moderate and severe aortic valve stenosis, mPAP/CO slope and percent-predicted peak Vo 2 were independent predictors of cardiovascular events, whereas peak systolic pulmonary artery pressure was not. In addition to aortic valve area and indexed left atrial volume, percent-predicted peak Vo 2 and mPAP/CO slope cumulatively improved risk stratification.

Cardiopulmonary Exercise Performance of Children Born Non-Extremely Preterm.

Fouzas S;  University of Patras School of Medicine, 26504 Patras, Greece.
Nourloglou A; Vervenioti A; Karatza A; Anthracopoulos M; Dimitriou G;

Children (Basel). 2024 Feb 4;11(2):198. doi: 10.3390/children11020198.

Data on exercise tolerance of children born non-extremely preterm are sparse. We aimed to explore the cardiopulmonary exercise testing (CPET) characteristics in this population. We studied 63 children (age 7-12 years) born at 290/7-366/7 weeks of gestation (34 were late preterm, 29 were preterm) and 63 age-matched, term-born controls. All performed spirometry and CPET (cycle ergometry). There were no differences in activity levels and spirometric parameters between the group of preterm-born children and controls. A peak oxygen uptake (VO2peak) of <80% was noted in 25.4% of the term-born and 49.2% of preterm-born children (p = 0.001). Term-born participants presented similar VO2peak to late-preterm children but higher than those born at <340/7 weeks of gestation (p = 0.002). Ventilatory limitation was noted in 4.8% of term and 7.9% of preterm participants, while only one preterm child presented cardiovascular limitation. Children born before 34 weeks of gestation had higher respiratory rates and smaller tidal volumes at maximum exercise, as well as lower oxygen uptake for the level of generated work. We conclude that school-age children born at 29-34 weeks of gestation may present decreased exercise performance attributed to an altered ventilatory response to exercise and impaired O2 utilization by their skeletal muscles rather than other cardiopulmonary limiting factors.

Hemoglobin is an independent predictor of improvement exercise tolerance in male patients with non-ischemic cardiomyopathy.

Tanihata, A; Department of Cardiovascular Medicine, Osaka Metropolitan University Graduate School of Medicine
Shibata, A; Yoshida, T; Kitada, R; Izumiya, Y; Fukuda, D;

Heart Vessels. 2024 Feb 27. doi: 10.1007/s00380-024-02358-w. Online ahead of print.

Exercise intolerance is a symptom of chronic heart failure (CHF). The magnitude of exercise tolerance, as measured by peak oxygen uptake (peak VO2), is strongly associated with prognosis in patients with CHF. We aimed to evaluate the factors associated with improved exercise tolerance in patients with HF. In this prospective study, we recruited patients who were diagnosed with non-ischemic cardiomyopathy between September 2017 and September 2021. All patients underwent cardiopulmonary exercise testing at discharge and 6 months after enrollment. The patients were stratified according to whether peak VO2 was increased or not at 6 months. One hundred patients with a reduced left-ventricular ejection fraction (LVEF < 50%) were enrolled. Improvement of peak VO2 was observed in 74 patients. In male patients, hemoglobin level was higher in the increased peak VO2 group than in the non-increased group (15.0 ± 1.9 g/dL vs. 13.1 ± 2.1 g/dL; p < 0.01). Baseline hemoglobin level was positively correlated with the percentage change in peak VO2 (Spearman’s r = 0.248, p = 0.040). Kaplan-Meier analysis demonstrated that adverse cardiac events were significantly less frequent in the increased peak VO2 group than in the non-increased group (log-rank test, p = 0.032). Multivariate logistic regression analysis identified hemoglobin level as an independent predictor of improved peak VO2 [odds ratio (OR) 1.60; 95% confidence interval (CI) 1.05-2.44; p = 0.027]. Baseline hemoglobin level is an independent predictor of improved peak VO2 in male patients with non-ischemic cardiomyopathy.

A collection of papers from Eur J Prev Cardiol 2023 Vol. 30 Issue 13

Dear all

I have just sent out around 10 papers from the Eur J Prev Cardiol 2023 Vol. 30 Issue 13. The format is slightly different to usual for technical reasons!

This was a Supplementary  Issue dedicated to CPET and emanated from the Centro Cardilogico Monzino

I hope that you find them as interesting as I did.

My best regards

DR PAUL OLDER

MD (Melb)
MB BS (Lond)
LRCP MRCS (Eng)
FRCA (Eng) FFARCS (Eng)
FANZCA (Aust)  FFICM (Aust)
Former Director CPX Laboratory
Western Hospital, Melbourne,
AustraliaExecutive Director CPX International Inc

 

 

 

 

International validation of the Metabolic Exercise test data combined with Cardiac and Kidney Indexes (MECKI) score in heart failure

S. Adamopoulos, D. Miliopoulos, E. Piotrowicz, J. A. Snoek, N. Panagopoulou, S. Nanas, et al.

Eur J Prev Cardiol 2023 Vol. 30 Issue 13 Pages 1371-1379

AIMS: Current European heart failure (HF) guidelines suggest the use of risk score: among them, the Metabolic Exercise test data combined with Cardiac and Kidney Indexes (MECKI) score has demonstrated to be one of the most accurate. However, the risk scores are still poorly implemented in clinical practice, also due to the lack of strong evidence regarding their external validation in different populations. Thus, the current study was designed as an external validation test of the MECKI score in an international multicentre setting.

METHODS AND RESULTS: The study cohort consisted of patients diagnosed with HF with reduced ejection fraction (HFrEF) across international centres (not Italian), retrospectively recruited. Collected data included demographics, HF aetiology, laboratory testing, electrocardiogram (ECG), echocardiographic findings, and cardiopulmonary exercise testing (CPET) results as described in the original MECKI score publication. A total of 1042 patients across 8 international centres (7 European and 1 Asian) were included and followed up from 1998 till 2019. Patients were divided according to the calculated MECKI scores into three subgroups: (i) MECKI score <10%, (ii) 10-20%, and (iii) >/= 20%. Survival analysis comparison among the three MECKI score subgroups showed a worse prognosis in patients with higher MECKI score value: median event-free survival times were 4396 days for MECKI score <10%, 3457 days for 10-20%, and 1022 days for >/=20% (P < 0.0001). Receiver operating characteristic (ROC) curves and area under the ROC curves (AUC) were like those reported in the original internal validation studies.

CONCLUSION: In patients diagnosed with HFrEF, the power of the MECKI score was confirmed in terms of prognosis and risk stratification, supporting its implementation as advised by the HF guidelines.
In patients diagnosed with heart failure with reduced ejection fraction, the Metabolic Exercise test data combined with Cardiac and Kidney Indexes (MECKI) risk score underwent an external validation. The MECKI score prognostic power was confirmed in a large population of patients from Europe and Asia. These data support MECKI score implementation, as advised by the 2021 European heart failure guidelines.

Determinants of exercise performance in heart failure patients with extremely reduced cardiac output and left ventricular assist device

A. Apostolo, C. Vignati, M. Cittar, N. Baracchini, S. Mushtaq, G. Cattadori, et al.

Eur J Prev Cardiol 2023 Vol. 30 Issue Suppl 2 Pages ii63-ii69

The evaluation of exercise capacity and cardiac output (QC) is fundamental in the management of patients with advanced heart failure (AdHF). QC and peak oxygen uptake (VO2) have a pivotal role in the prognostic stratification and in the definition of therapeutic interventions, including medical therapies and devices, but also specific treatments such as heart transplantation and left ventricular assist device (LVAD) implantation. Due to the intertwined relationship between exercise capacity and daily activities, exercise intolerance dramatically has impact on the quality of life of patients. It is a multifactorial process that includes alterations in central and peripheral haemodynamic regulation, anaemia and iron deficiency, pulmonary congestion, pulmonary hypertension, and peripheral O2 extraction. This paper aims to review the pathophysiological background of exercise limitations in HF patients and to examine the complex physiology of exercise in LVAD recipients, analysing the interactions between the cardiopulmonary system, the musculoskeletal system, the autonomic nervous system, and the pump. We performed a literature review to highlight the current knowledge on this topic and possible interventions that can be implemented to increase exercise capacity in AdHF patients-including administration of levosimendan, rehabilitation, and the intriguing field of LVAD speed changes. The present paper confirms the role of CPET in the follow-up of this peculiar population and the impact of exercise capacity on the quality of life of AdHF patients.

The cardiopulmonary exercise test in the prognostic evaluation of patients with heart failure and cardiomyopathies: the long history of making a one-size-fits-all suit

E. Salvioni, A. Bonomi, D. Magri, M. Merlo, B. Pezzuto, M. Chiesa, et al.

Eur J Prev Cardiol 2023 Vol. 30 Issue Suppl 2 Pages ii28-ii33

Cardiopulmonary exercise test (CPET) has become pivotal in the functional evaluation of patients with chronic heart failure (HF), supplying a holistic evaluation both in terms of exercise impairment degree and possible underlying mechanisms. Conversely, there is growing interest in investigating possible multiparametric approaches in order to improve the overall HF risk stratification. In such a context, in 2013, a group of 13 Italian centres skilled in HF management and CPET analysis built the Metabolic Exercise test data combined with Cardiac and Kidney Indexes (MECKI) score, based on the dynamic assessment of HF patients and on some other instrumental and laboratory parameters. Subsequently, the MECKI score, initially developed on a cohort of 2716 HF patients, has been extensively validated as well as challenged with the other multiparametric scores, achieving optimal results. Meanwhile, the MECKI score research group has grown over time, involving up to now a total of 27 centres with an available database accounting for nearly 8000 HF patients. This exciting joint effort from multiple HF Italian centres allowed to investigate different HF research field in order to deepen the mechanisms underlying HF, to improve the ability to identify patients at the highest risk as well as to analyse particular HF categories. Most recently, some of the participants of the MECKI score group started to join the forces in investigating a possible additive role of CPET assessment in the cardiomyopathy setting too. The present study tells the ten-year history of the MECKI score presenting the most important results achieved as well as those projects in the pipeline, this exciting journey being far to be concluded.

Dysregulation of ventilation at day and night time in heart failure

M. Contini, M. Mapelli, C. Carriere, P. Gugliandolo, A. Aliverti, M. Piepoli, et al.

Eur J Prev Cardiol 2023 Vol. 30 Issue Suppl 2 Pages ii16-ii21

Heart failure (HF) is characterized by an increase in ventilatory response to exercise of multifactorial aetiology and by a dysregulation in the ventilatory control during sleep with the occurrence of both central and obstructive apnoeas. In this setting, the study of the ventilatory behaviour during exercise, by cardiopulmonary exercise testing, or during sleep, by complete polysomnography or simplified nocturnal cardiorespiratory monitoring, is of paramount importance because of its prognostic value and of the possible effects of sleep-disordered breathing on the progression of the disease. Moreover, several therapeutic interventions can significantly influence ventilatory control in HF. Also, rest daytime monitoring of cardiac, metabolic, and respiratory activities through specific wearable devices could provide useful information for HF management. The aim of the review is to summarize the main studies conducted at Centro Cardiologico Monzino on these topics.