Karlman Wasserman, MD, PhD, FCCP
Chest 1997; 112: 1091-1101
No abstract available. A classic paper describing diagnosis of cardio-pulmonary pathophysiology from CPET.
Category Archives: Abstracts
Effect of heliox on lung dynamic hyperinflation, dyspnea, and exercise endurance capacity in COPD patients
Paolo Palange, Gabriele Valli, Paolo Onorati, Rosa Antonucci, Patrizia Paoletti, Alessia Rosato, Felice Manfredi, and Pietro Serra
J Appl Physiol 97: 1637–1642, 2004.
We tested the hypothesis that heliox breathing, by reducing lung dynamic hyperinflation (DH) and dyspnea (Dys) sensation, may significantly improve exercise endurance capacity in patients with chronic obstructive pulmonary disease [n = 12, forced expiratory volume in 1 s = 1.15 (SD 0.32) liters]. Each subject underwent two cycle ergometer high-intensity constant work rate exercises to exhaustion, one on room air and one on heliox (79% He-21% O2). Minute ventilation (VE), carbon dioxide output, heart rate, inspiratory capacity (IC), Dys, and arterial partial pressure of CO2 were measured. Exercise endurance time increased significantly with heliox [9.0 (SD 4.5) vs. 4.2 (SD 2.0) min; P < 0.001]. This was associated with a significant reduction in lung DH at isotime (Iso), as reflected by the increase in IC [1.97 (SD 0.40) vs. 1.77 (SD 0.41) liters; P < 0.001] and a decrease in Dys [6 (SD 1) vs. 8 (SD 1) score; P < 0.001]. Heliox induced a state of relative hyperventilation, as reflected by the increase in VE [38.3 (SD 7.7) vs. 35.5 (SD 8.8) l/min; P < 0.01] and VE/carbon dioxide output [36.3 (SD 6.0) vs. 33.9 (SD 5.6); P < 0.01] at peak exercise and by the reduction in arterial partial pressure of CO2 at Iso [44 (SD 6) vs. 48 (SD 6) Torr; P < 0.05] and at peak exercise [46 (SD 6) vs. 48 (SD 6) Torr; P < 0.05]. The reduction in Dys at Iso correlated significantly (R = -0.75; P < 0.01) with the increase in IC induced by heliox. The increment induced by heliox in exercise endurance time correlated significantly with resting increment in resting forced expiratory in 1 s (R = 0.88; P < 0.01), increase in IC at Iso (R = 0.70; P < 0.02), and reduction in Dys at Iso (R = -0.71; P < 0.01). In chronic obstructive pulmonary disease, heliox breathing improves high-intensity exercise endurance capacity by increasing maximal ventilatory capacity and by reducing lung DH and Dys.
A Treadmill Ramp Protocol Using Simultaneous Changes in Speed and Grade
Janos Porszasz, Richard Casaburi, Attila Somfay, Linda J. Woodhouse, and Brian J. Whipp
Med. Sci. Sports Exerc., Vol. 35, No. 9, pp. 1596-1602, 2003
INTRODUCTION: A treadmill exercise test requiring a low initial metabolic rate that then increments the work rate linearly to reach the subject’s limit of tolerance in approximately 10 min would have significant advantages for exercise testing and rehabilitation of subjects with impaired exercise tolerance. METHODS: We developed such a treadmill protocol that uses a linear increase in walking speed coupled with a curvilinear increase in treadmill grade to yield a linear increase in work rate. RESULTS: Twenty-two healthy, sedentary subjects performed both this new treadmill protocol and a standard cycle ergometry ramp protocol eliciting similar work rate profiles. The low initial treadmill speed and grade resulted in a low initial metabolic rate, commensurate with unloaded pedaling on a cycle ergometer (average [OV0312]O2 = 0.54 +/- 0.16 vs 46 +/- 0.12 l x min(-1)). This combination of simultaneous increase in speed and grade yielded a linear work rate and its oxygen uptake response (R2 = 0.96 +/- 0.03) with a slope of 11.4 +/- 2.4 ml x min(-1) x W(-1)-slightly, but significantly, higher than on the cycle (9.6 +/- 2.0 ml x min(-1) x W(-1)). This difference was attributed to unmeasured work associated, for example, with additional limb movements and frictional losses. As previously demonstrated, both the peak oxygen uptake and the estimated lactate threshold were higher on the treadmill than for cycle ergometry (averaging 23% and 27%, respectively, in these subjects). CONCLUSION: This treadmill protocol provides a linear profile of work rate as is currently standard for cycle ergometry and is appropriate for testing of subjects with low exercise tolerance.
Effects of Whole-Body Exercise Training on Body Composition and Functional Capacity in Normal-Weight Patients With COPD
Frits M.E. Franssen, Roelinka Broekhuizen, Paul P. Janssen, Emiel F.M. Wouters, Annemie M.W. Schols
Chest 2004; 125:2021-2028
BACKGROUND: Skeletal muscle wasting is related to muscle dysfunction, exercise intolerance, and increased mortality risk in patients with COPD. STUDY OBJECTIVES: The aims of this study were to investigate the effects of whole-body exercise training on body composition in normal-weight patients with COPD, and to study the relationship between changes in body composition and functional capacity. SETTING AND PARTICIPANTS: Fifty patients with COPD (FEV(1), 39% of predicted [SD, 16]) admitted to the pulmonary rehabilitation center at Hornerheide, and 36 healthy age-matched control subjects (for baseline comparison) were included. INTERVENTIONS: Patients participated in a standardized inpatient exercise training program consisting of daily submaximal cycle ergometry, treadmill walking, weight training, and gymnastics during 8 weeks. MEASUREMENTS: Fat-free mass (FFM) was measured by bioelectrical impedance analysis. None of the patients met the criteria for nutritional supplementation (body mass index </= 21, or FFM index </= 15 kg/m(2) in women and </= 16 kg/m(2) in men). Exercise capacity was measured using incremental cycle ergometry. Isokinetic quadriceps strength was measured with a Biodex dynamometer (Biodex Medical Corporation; Shirley, NY). RESULTS: At baseline, patients were characterized by a significantly lower FFM than the control subjects. Age and FFM were independent predictors of skeletal muscle function and exercise capacity in patients. After rehabilitation, weight (72.4 +/- 9.8 to 73.0 +/- 9.4 kg, p < 0.05) significantly increased, as a result of increased FFM (52.4 +/- 7.3 to 53.4 +/- 7.7 kg, p < 0.05), while fat mass (20.0 +/- 6.1 to 19.6 +/- 5.7 kg) tended to decrease. Peak work rate (63 +/- 29 to 84 +/- 42 W, p < 0.001), maximal oxygen consumption (O(2)max) [1,028 +/- 307 to 1,229 +/- 421 mL/min, p < 0.001], and isokinetic quadriceps strength (82.5 +/- 36.4 to 90.3 +/- 34.9 Newton-meters, p < 0.05) all improved. Changes in FFM were proportionally smaller than functional improvements, and were related to changes in O(2)max (r = 0.361, p < 0.05), but not to other changes in functional capacity. CONCLUSIONS: Intensive exercise training per se is able to induce an anabolic response in normal-weight patients with COPD classified into Global Initiative for Chronic Obstructive Lung Disease stages III-IV. Improvements in exercise performance and muscle function are proportionally larger than increases in FFM.
Exercise-induced myocardial ischaemia detected by cardiopulmonary exercise testing
Romualdo Belardinelli, Francesca Lacalaprice, Flavia Carle, Adelaide Minnucci, Giovanni Cianci, GianPiero Perna, Giuseppe D’Eusanio
European Heart Journal (2003) 24, 1304-1313
BACKGROUND: The objective of the study was to identify the parameter(s) of cardiopulmonary exercise testing (CPET) that can detect exercise-induced myocardial ischaemia (EIMI), and to determine its diagnostic accuracy for identifying patients with coronary artery disease (CAD). METHODS AND RESULTS: We prospectively studied 202 consecutive patients (173 men, 29 women, mean age 55.7+/-10.8 years) with documented CAD. All patients underwent an incremental exercise stress testing (ECG-St) with breath-by-breath gas exchange analysis, followed by a 2-day stress/rest gated SPECT myocardial scintigraphy (GSMS) as the gold standard for ischaemia detection. ROC analysis selected a two-variable model-O(2)pulse flattening duration, calculated from the onset of myocardial ischaemia to peak exercise, and deltaVO(2)/deltawork rate slope-to predict EIMI by CPET. GSMS identified 140 patients with reversible myocardial defects, with a Summed Difference Score (SDS) of 9.7+/-2.8, and excluded EIMI in 62 (SDS 1.3+/-1.6). ECG-St had low sensitivity (46%) and specificity (66%) to diagnose EIMI as compared with CPET (87% and 74%, respectively). CONCLUSIONS: The addition of gas exchange analysis improves the diagnostic accuracy of standard ECG stress testing in identifying EIMI. A two-variable model based on O(2)pulse flattening duration and deltaVO(2)/deltawork rate slope had the highest predictive ability to identify EIMI.
Work-rate affects cardiopulmonary exercise test results in heart failure
Piergiuseppe Agostoni, Michele Bianchia, Andrea Moraschia, Pietro Palermoa, Gaia Cattadoria, Rocco La Gioiab, Maurizio Bussottia, Karlman Wasserman
Europ J of Heart Failure 2005; 7: 498-504
AIMS: Cardiopulmonary exercise test (CPET) is used to evaluate patients with chronic heart failure (HF) usually by means of a personalized ramp exercise protocol. Our aim was to evaluate if exercise duration or ramp rate influences the results. METHODS AND RESULTS: Ninety HF patients were studied (peak V (O(2)): >20 ml/min/kg, n=28, 15-20 ml/min/kg, n=39 and <15 ml/min/kg, n=23). Each patient did four CPET studies. The initial study was used to separate the subjects into three groups, according to their exercise capacity. In the remaining studies, work-rate was increased at three different rates designed to have the subjects reach peak exercise in 5, 10 and 15 min from the start of the ramp increase in work-rate, respectively. The order was randomized. The work-rate applied for the total population averaged 22.7+/-8.0, 11.6+/-3.7, 7.5+/-2.9 W/min with effective loaded exercise duration of 5 min and 16 s+/-29 s, 9 min and 43 s+/-49 s and 14 min and 32 s+/-1 min and 12 s for the 5-, 10- and 15-min tests, respectively. Peak V (O(2)) averaged 16.9+/-4.3*, 18.0+/-4.4 and 18.0+/-5.4 ml/min/kg for the 5-, 10- and 15-min tests, (*=p<0.001 vs. 10 min). The shortest test had the lowest peak heart rate and ventilation and highest peak work-rate. Peak V (O(2)) and heart rate were lowest in 5-min tests regardless of HF severity. The DeltaV (O(2))/Deltawork-rate was lowest in 5-min tests and highest in 15-min tests. At all ramp rates, DeltaV (O(2))/Deltawork-rate was lower for the subjects with the lower peak V (O(2)). The V (e)/V (CO(2)) slope and V (O(2)) at anaerobic threshold were not affected by the protocol for any grade of HF. CONCLUSIONS: In chronic HF, exercise protocol has a small effect on peak V (O(2)) and DeltaV (O(2))/Deltawork but does not affect V (O(2)) at anaerobic threshold and V (e)/V (CO(2)) slope.