Phillips DB; Elbehairy AF; James MD; Vincent SG; Milne KM; de-Torres JP; Neder JA;Kirby M; Jensen D; Stickland MK; Guenette JA; Smith BM; Aaron SD; Tan WC; Bourbeau J; O’Donnell DE;
American journal of respiratory and critical care medicine [Am J Respir Crit Care Med] 2022 Mar 25.
Date of Electronic Publication: 2022 Mar 25.
Rationale: Impaired exercise ventilatory efficiency (high ventilatory requirements for CO2 [V̇E/V̇CO2]) provides an indication of pulmonary gas exchange abnormalities in chronic obstructive pulmonary disease (COPD).
Objectives: To determine: 1) the association between high V̇E/V̇CO2 and clinical outcomes (dyspnea and exercise capacity) and its relationship to lung function and structural radiographic abnormalities; and 2) its prevalence in a large population-based cohort.
Methods: Participants were recruited randomly from the population and underwent clinical evaluation, pulmonary function, cardiopulmonary exercise testing and chest computed tomography (CT). Impaired exercise ventilatory efficiency was defined by a nadir V̇E/V̇CO2 above the upper limit of normal (V̇E/V̇CO2>ULN), using population-based normative values.
Measurements and Main Results: Participants included 445 never-smokers, 381 ever-smokers without airflow obstruction, 224 with GOLD 1 COPD, and 200 with GOLD 2-4 COPD. Participants with V̇E/V̇CO2>ULN were more likely to have activity-related dyspnea (Medical Research Council dyspnea scale≥2, odds ratio=1.77[1.31-2.39]) and abnormally low peak oxygen uptake (V̇O2peak<LLN, odds ratio=4.58[3.06-6.86]). The carbon monoxide transfer coefficient (KCO) had a stronger correlation with nadir V̇E/V̇CO2 (r=-0.38, p<0.001) than other relevant lung function and CT metrics. The prevalence of V̇E/V̇CO2>ULN was 24% in COPD (similar in GOLD 1 and 2-4), which was greater than in never-smokers (13%) and ever-smokers (12%).
Conclusions: V̇E/V̇CO2>ULN was associated with greater dyspnea and low VO2peak and was present in 24% of all participants with COPD, regardless of GOLD stage. The results show the importance of recognizing impaired exercise ventilatory efficiency as a potential contributor to dyspnea and exercise limitation, even in mild COPD.