Lechuga CG; Department of Biomedical Engineering, University of California, Irvine, Irvine, CA.
Raza F; Colebank MJ; Korcarz CE;Eickhoff JC; Chesler NC;
American journal of physiology. Heart and circulatory physiology [Am J Physiol Heart Circ Physiol] 2025 Sep 12.
Date of Electronic Publication: 2025 Sep 12.
Wave intensity analysis provides a novel approach to understanding the dynamic interactions between the right ventricle and pulmonary vasculature, particularly in pulmonary hypertension, a condition characterized by elevated pulmonary arterial pressures and vascular remodeling. This prospective study used wave intensity analysis to evaluate right ventricular and pulmonary vascular mechanics in 22 participants with pulmonary hypertension (including pre-capillary, isolated post-capillary, and combined pre-/post-capillary pulmonary hypertension), and 3 without pulmonary hypertension. Forward and backward compression and decompression waves were quantified at rest and during incremental exercise (25, 50, 75 watts). Relationships between metrics of wave intensity analysis, hemodynamics, right ventricular function, and oxygen consumption were analyzed using linear mixed-effects modeling. Wave intensity patterns highlighting vessel-specific pulmonary vascular and right ventricular pathobiology were observed in different phenotypes. Pre-capillary pulmonary hypertension exhibited highest forward compression waves, which correlated with right ventricular contractility (p<0.01). Backward compression waves correlated strongly with characteristic impedance (p=0.002) in combined pre-/post-capillary pulmonary hypertension and inversely with pulmonary arterial compliance (p=0.003) in pre-capillary pulmonary hypertension. The ratio of backward to forward compression (systolic) waves decreased in isolated post-capillary pulmonary hypertension during exercise (p<0.001), suggesting right ventricular reserve capacity that improves vascular-ventricular coupling. Wave intensity metrics demonstrated strong correlations with oxygen consumption in participants without pulmonary hypertension, indicating sensitivity to exercise-induced changes in cardiopulmonary status. Wave intensity analysis with exercise suggests vessel-specific pulmonary vascular and right ventricular characteristics unique to pulmonary hypertension phenotypes. These findings highlight wave intensity analysis as a promising tool for advancing understanding of cardiopulmonary pathobiology in pulmonary hypertension.