Author Archives: Paul Older

Non-invasive ventilatory support accelerates the oxygen uptake and heart rate kinetics and improves muscle oxygenation dynamics in COPD-HF patients.

Simões RP; Goulart CDL; Caruso FR; de Araújo ASG; de Moura SCG; Catai AM; Dos Santos PB; Camargo PF;
Marinho RS; Mendes RG; Borghi-Silva A;

The American journal of the medical sciences [Am J Med Sci] 2023 May 06.
Date of Electronic Publication: 2023 May 06

Background: The aim of this study was to explore the effects of non-invasive positive pressure ventilation (NIPPV) associated with high-intensity exercise on heart rate (HR) and oxygen uptake (V̇O 2 ) recovery kinetics in in patients with coexistence of chronic obstructive pulmonary disease (COPD) and heart failure (HF).
Methods: This is a randomized, double blinded, sham-controlled study involving 14 HF-COPD patients, who underwent a lung function test and Doppler echocardiography. On two different days, patients performed incremental cardiopulmonary exercise testing (CPET) and two constant-work rate tests (80% of CPET peak) receiving Sham or NIPPV (bilevel mode – Astral 150) in a random order until the limit of tolerance (Tlim). During exercise, oxyhemoglobin and deoxyhemoglobin were assessed using near-infrared spectroscopy (Oxymon, Artinis Medical Systems, Einsteinweg, Netherland).
Results: The kinetic variables of both V̇O 2 and HR during the high-intensity constant workload protocol were significantly faster in the NIPPV protocol compared to Sham ventilation (P<0.05). Also, there was a marked improvement in oxygenation and lower deoxygenation of both peripheral and respiratory musculature in TLim during NIPPV when contrasted with Sham ventilation.
Conclusions: NIPPV applied during high-intensity dynamic exercise can effectively improve exercise tolerance, accelerate HR and V̇O 2 kinetics, improve respiratory and peripheral muscle oxygenation in COPD-HF patients. These beneficial results from the effects of NIPPV may provide evidence and a basis for high-intensity physical training for these patients in cardiopulmonary rehabilitation programs.

Influence of exertional oscillatory breathing and its temporal behavior in patients with heart failure and reduced ejection fraction.

Magrì D; Palermo P; Salvioni E; Mapelli M; Gallo G; Vignati C; Mattavelli I; Gugliandolo P; Maruotti A; Di Loro PA; Fiori E; Sciomer S; Agostoni P;

International journal of cardiology [Int J Cardiol] 2023 May 08.
Date of Electronic Publication: 2023 May 08.

Background: Exertional oscillatory breathing (EOV) represents an emerging prognostic marker in heart failure (HF) patients, however little is known about EOV meaning with respect to its disappearance/persistence during cardiopulmonary exercise test (CPET). The present single-center study evaluated EOV clinical and prognostic impact in a large cohort of reduced ejection fraction HF patients (HFrEF) and, contextually, if a specific EOV temporal behavior might be an addictive risk predictor.
Methods and Results: Data from 1.866 HFrEF patients on optimized medical therapy were analysed. The primary cardiovascular (CV) study end-point was cardiovascular death, heart transplantation or LV assistance device (LVAD) implantation at 5-years. For completeness a secondary end-point of total mortality at 5- years was also explored. EOV presence was identified in 251 patients (13%): 142 characterized by EOV early cessation (Group A) and 109 by EOV persistence during the whole CPET (Group B). The entire EOV Group showed worse clinical and functional status than NoEOV Group (n = 1.615) and, within the EOV Group, Group B was characterized by a more severe HF. At CV survival analysis, EOV patients showed a poorer outcome than the NoEOV Group (events 27.1% versus 13.1%, p < 0.001) both unpolished and after matching for main confounders. Instead, no significant differences were found between EOV Group A and B with respect to CV outcome. Conversely the analysis for total mortality failed to be significant.
Conclusions: Our analysis, albeit retrospective, supports the inclusion of EOV into a CPET-centered clinical and prognostic evaluation of the HFrEF patients. EOV characterizes per se a more advanced HFrEF stage with an unfavorable CV outcome. However, the EOV persistence, albeit suggestive of a more severe HF, does not emerge as a further prognostic marker.

The cardiorespiratory optimal point as a discriminator of lesion severity in adults with congenital heart disease.

Wernhart S; Mincu R; Balcer B; Rammos C; Muentjes C; Rassaf T;

The Journal of sports medicine and physical fitness [J Sports Med Phys Fitness] 2023 May 11.
Date of Electronic Publication: 2023 May 11.

Background: Peak oxygen consumption (VO2peak), which depends on maximal exertion and is reduced in adults with congenital heart disease (ACHD), is associated with lesion severity. The lowest ventilatory equivalent for oxygen (the minimum value of VE/VO2) reflects the cardiorespiratory optimal point (COP) as best possible respiration-circulatory interaction and may discriminate between lesion types without the need for maximal exertion. However, data on COP in ACHD is scarce.
Methods: We retrospectively analyzed stable ACHD with moderate (N.=13) and severe lesions (N.=17) reporting to our outpatient clinic undergoing cardiopulmonary exercise testing. The primary outcome of the study was the difference of COP between moderate and severe lesions. Secondary outcomes were between group differences of the submaximal variable exercise oxygen uptake efficiency slope (OUES) and peak O<inf>2</inf> pulse (O<inf>2</inf>pulse<inf>max</inf>) as a surrogate for peripheral oxygen extraction and stroke volume increase during exercise.
Results: The group of severe lesions displayed higher COP (29.5±7.0 vs. 25.2±6.2, P=0.028) as well as lower O2pulse max (13.3±8.4 vs. 14.9±3.4 mL/beat/kg 10 2 ), P=0.038). VO2peak (17.4±6.5 vs. 20.8±8.5 mL/kg/min, P=0.286) and OUES (1.5±0.7 vs. 1.8±0.9, P=0.613) showed a trend towards lower values in severe lesions. COP was a better between group discriminator than O2pulse max (area under the curve 73.8% vs. 72.4%).
Conclusions: As a submaximal variable, COP discriminated between moderate and severe lesions and may prove beneficial in a highly vulnerable population that is often unable to undergo exertional testing.

Exercise Testing in the Risk Assessment of Pulmonary Hypertension.

Forbes LM; Bull TM; Lahm T; Make BJ; Cornwell WK 3rd;

Chest [Chest] 2023 Apr 14.
Date of Electronic Publication: 2023 Apr 14.

Right ventricular dysfunction in pulmonary hypertension (PH) contributes to reduced exercise capacity, morbidity, and mortality. Exercise can unmask right ventricular dysfunction not apparent at rest, with negative implications for prognosis. Among patients with pulmonary vascular disease, right ventricular afterload may increase during exercise out of proportion to increases observed among healthy individuals. Right ventricular contractility must increase to match the demands of increased afterload to maintain ventricular-arterial coupling (the relationship between contractility and afterload) and ultimately cardiac output. Impaired right ventricular contractile reserve leads to ventricular-arterial uncoupling, preventing cardiac output from increasing during exercise and limiting exercise capacity. Abnormal pulmonary vascular response to exercise can signify early pulmonary vascular disease and is associated with increased mortality. Impaired right ventricular contractile reserve similarly predicts poor outcomes, including reduced exercise capacity and death. Exercise provocation can be used to assess pulmonary vascular response to exercise and right ventricular contractile reserve. Noninvasive techniques (including cardiopulmonary exercise testing, transthoracic echocardiography, and cardiac MRI) as well as invasive techniques (including right heart catheterization and pressure-volume analysis) may be applied selectively to the screening, diagnosis, and risk stratification of patients with suspected or established PH. Further research is required to determine the role of exercise stress testing in the management of pulmonary vascular disease. This review describes the current understanding of clinical applications of exercise testing in the risk assessment of patients with suspected or established PH.

Acute Effects of a Maximal Cardiopulmonary Exercise Test on Cardiac Hemodynamic and Cerebrovascular Response and Their Relationship with Cognitive Performance in Individuals with Type 2 Diabetes.

Besnier F; Gagnon C; Monnet M; Dupuy O; Nigam A; Juneau M; Bherer L; Gayda M;

International journal of environmental research and public health [Int J Environ Res Public Health] 2023
Apr 18; Vol. 20 (8).
Date of Electronic Publication: 2023 Apr 18.

Cardiovascular and cerebrovascular diseases are prevalent in individuals with type 2 diabetes (T2D). Among people with T2D aged over 70 years, up to 45% might have cognitive dysfunction. Cardiorespiratory fitness (V˙O 2 max) correlates with cognitive performances in healthy younger and older adults, and individuals with cardiovascular diseases (CVD). The relationship between cognitive performances, V˙O 2 max, cardiac output and cerebral oxygenation/perfusion responses during exercise has not been studied in patients with T2D. Studying cardiac hemodynamics and cerebrovascular responses during a maximal cardiopulmonary exercise test (CPET) and during the recovery phase, as well as studying their relationship with cognitive performances could be useful to detect patients at greater risk of future cognitive impairment. Purposes: (1) to compare cerebral oxygenation/perfusion during a CPET and during its post-exercise period (recovery); (2) to compare cognitive performances in patients with T2D to those in healthy controls; and (3) to examine if V˙O 2 max, maximal cardiac output and cerebral oxygenation/perfusion are associated with cognitive function in individuals with T2D and healthy controls. Nineteen patients with T2D (61.9 ± 7 years old) and 22 healthy controls (HC) (61.8 ± 10 years old) were evaluated on the following: a CPET test with impedance cardiography and cerebral oxygenation/perfusion using a near-infrared spectroscopy. Prior to the CPET, the cognitive performance assessment was performed, targeting: short-term and working memory, processing speed, executive functions, and long-term verbal memory. Patients with T2D had lower V˙O 2 max values compared to HC (34.5 ± 5.6 vs. 46.4 ± 7.6 mL/kg fat free mass/min; p < 0.001). Compared to HC, patients with T2D showed lower maximal cardiac index (6.27 ± 2.09 vs. 8.70 ± 1.09 L/min/m 2 , p < 0.05) and higher values of systemic vascular resistance index (826.21 ± 308.21 vs. 583.35 ± 90.36 Dyn·s/cm 5 ·m 2 ) and systolic blood pressure at maximal exercise (204.94 ± 26.21 vs. 183.61 ± 19.09 mmHg, p = 0.005). Cerebral HHb during the 1st and 2nd min of recovery was significantly higher in HC compared to T2D ( p < 0.05). Executive functions performance (Z score) was significantly lower in patients with T2D compared to HC (-0.18 ± 0.7 vs. -0.40 ± 0.60, p = 0.016). Processing speed, working and verbal memory performances were similar in both groups. Brain tHb during exercise and recovery (-0.50, -0.68, p < 0.05), and O 2 Hb during recovery (-0.68, p < 0.05) only negatively correlated with executive functions performance in patients with T2D (lower tHb values associated with longer response times, indicating a lower performance). In addition to reduced V˙O 2 max, cardiac index and elevated vascular resistance, patients with T2D showed reduced cerebral hemoglobin (O 2 Hb and HHb) during early recovery (0-2 min) after the CPET, and lower performances in executive functions compared to healthy controls. Cerebrovascular responses to the CPET and during the recovery phase could be a biological marker of cognitive impairment in T2D.

Cardiopulmonary exercise testing and heart failure: a tale born from oxygen uptake.

Mapelli M; Salvioni E; Mattavelli I; Vignati C; Galotta A; Magrì D; Apostolo A; Sciomer S; Campodonico J; Agostoni P;

European heart journal supplements : journal of the European Society of Cardiology [Eur Heart J Suppl] 2023
Apr 26; Vol. 25 (Suppl C), pp. C319-C325.
Date of Electronic Publication: 2023 Apr 26 (Print Publication: 2023).

Since 50 years, cardiopulmonary exercise testing (CPET) plays a central role in heart failure (HF) assessment. Oxygen uptake (VO 2 ) is one of the main HF prognostic indicators, then paralleled by ventilation to carbon dioxide (VE/VCO 2 ) relationship slope. Also anaerobic threshold retains a strong prognostic power in severe HF, especially if expressed as a percent of maximal VO 2 predicted value. Moving beyond its absolute value, a modern approach is to consider the percentage of predicted value for peak VO 2 and VE/VCO 2 slope, thus allowing a better comparison between genders, ages, and races. Several VO 2 equations have been adopted to predict peak VO 2 , built considering different populations. A step forward was made possible by the introduction of reliable non-invasive methods able to calculate cardiac output during exercise: the inert gas rebreathing method and the thoracic electrical bioimpedance. These techniques made possible to calculate the artero-venous oxygen content differences (ΔC(a-v)O 2 ), a value related to haemoglobin concentration, pO 2 , muscle perfusion, and oxygen extraction. The role of haemoglobin, frequently neglected, is however essential being anaemia a frequent HF comorbidity. Finally, peak VO 2 is traditionally obtained in a laboratory setting while performing a standardized physical effort. Recently, different wearable ergo-spirometers have been developed to allow an accurate metabolic data collection during different activities that better reproduce HF patients’ everyday life. The evaluation of exercise performance is now part of the holistic approach to the HF syndrome, with the inclusion of CPET data into multiparametric prognostic scores, such as the MECKI score.

Effects of wearing different face masks on cardiopulmonary performance at rest and exercise in a partially double-blinded randomized cross-over study.

Marek EM; van Kampen V; Jettkant B; IKendzia B; Strauß B; Sucker K; Ulbrich M; Deckert A; Berresheim H; Eisenhawer C; Hoffmeyer F; Weidhaas S; Behrens T; Brüning T; Bünger J;

Scientific reports [Sci Rep] 2023 Apr 28; Vol. 13 (1), pp. 6950.
Date of Electronic Publication: 2023 Apr 28.

The use of face masks became mandatory during SARS-CoV-2 pandemic. Wearing masks may lead to complaints about laboured breathing and stress. The influence of different masks on cardiopulmonary performance was investigated in a partially double-blinded randomized cross-over design. Forty subjects (19-65 years) underwent body plethysmography, ergometry, cardiopulmonary exercise test and a 4-h wearing period without a mask, with a surgical mask (SM), a community mask (CM), and an FFP2 respirator (FFP2). Cardiopulmonary, physical, capnometric, and blood gas related parameters were recorded. Breathing resistance and work of breathing were significantly increased while wearing a mask. During exercise the increase in minute ventilation tended to be lower and breathing time was significantly longer with mask than without mask. Wearing a mask caused significant minimal decreases in blood oxygen pressure, oxygen saturation, an initial increase in blood and inspiratory carbon dioxide pressure, and a higher perceived physical exertion and temperature and humidity behind the mask under very heavy exercise. All effects were stronger when wearing an FFP2. Wearing face masks at rest and under exercise, changed breathing patterns in the sense of physiological compensation without representing a health risk. Wearing a mask for 4-h during light work had no effect on blood gases.

Association of complication of type 2 diabetes mellitus with hemodynamics and exercise capacity in patients with heart failure with preserved ejection fraction: a case-control study in individuals aged 65-80 years.

Sugita Y; Ito K; Yoshioka Y; Sakai S;

Cardiovascular diabetology [Cardiovasc Diabetol] 2023 Apr 28; Vol. 22 (1), pp. 97.
Date of Electronic Publication: 2023 Apr 28.

Background: Type 2 diabetes mellitus (T2DM) is a frequently observed complication in patients with heart failure with preserved ejection fraction (HFpEF). Although a characteristic finding in such patients is a decrease in objective exercise capacity represented by peak oxygen uptake (peakVO 2 ), exercise capacity and its predictors in HFpEF with T2DM remain not clearly understood. This case-control study aimed to investigate the association between exercise capacity and hemodynamics indicators and T2DM comorbidity in patients with HFpEF aged 65-80 years.
Methods: Ninety-nine stable outpatients with HFpEF and 50 age-and-sex-matched controls were enrolled. Patients with HFpEF were classified as HFpEF with T2DM (n = 51, median age, 76 years) or without T2DM (n = 48, median age, 76 years). The peakVO 2 and ventilatory equivalent versus carbon dioxide output slope (VE vs VCO 2 slope) were measured by cardiopulmonary exercise testing. The peak heart rate (HR) and peak stroke volume index (SI) were measured using impedance cardiography, and the estimated arteriovenous oxygen difference (peak a-vO 2 diff) was calculated with Fick’s equation. The obtained data were compared among the three groups using analysis of covariance adjusted for the β-blocker medication, presence or absence of sarcopenia, and hemoglobin levels in order to determine the T2DM effects on exercise capacity and hemodynamics in patients with HFpEF.
Results: In HFpEF with T2DM compared with HFpEF without T2DM and the controls, the prevalence of sarcopenia, chronotropic incompetence, and anemia were significantly higher (p < 0.001). The peakVO 2  (Controls 23.5 vs. without T2DM 15.1 vs. with T2DM 11.6 mL/min/kg), peak HR (Controls 164 vs. without T2DM 132 vs. with T2DM 120 bpm/min), peak a-vO 2  (Controls 13.1 vs without T2DM 10.6 vs with T2DM 8.9 mL/100 mL), and VE vs VCO 2 slope (Controls 33.2 vs without T2DM 35.0 vs with T2DM 38.2) were significantly worsened in patients with HFpEF with T2DM (median, p < 0.001). There was no significant difference in peak SI among the three groups.
Conclusions: Our results suggested that comorbid T2DM in patients with HFpEF may reduce exercise capacity, HR response, peripheral oxygen extraction, and ventilation efficiency. These results may help identify cardiovascular phenotypes of HFpEF complicated with T2DM and intervention targets for improving exercise intolerance.

Significant exercise limitations after recovery from MIS-C related myocarditis.

Mainzer G; Zucker-Toledano M; Hanna M; Bar-Yoseph R; Kodesh E;

World journal of pediatrics : WJP [World J Pediatr] 2023 May 01.
Date of Electronic Publication: 2023 May 01.

Background: Myocarditis is one of the presentations of multisystemic inflammatory syndrome in children (MIS-C) following coronavirus disease 2019 (COVID-19). Although the reported short-term prognosis is good, data regarding medium-term functional capacity and limitations are scarce. This study aimed to evaluate exercise capacity as well as possible cardiac and respiratory limitations in children recovered from MIS-C related myocarditis.
Methods: Fourteen patients who recovered from MIS-C related myocarditis underwent spirometry and cardiopulmonary exercise testing (CPET), and their results were compared with an age-, sex-, weight- and activity level-matched healthy control group (n = 14).
Results: All participants completed the CPET with peak oxygen uptake (peak [Formula: see text]), and the results were within the normal range (MIS-C 89.3% ± 8.9% and Control 87.9% ± 13.7% predicted [Formula: see text]). Five post-MIS-C patients (35%) had exercise-related cardio-respiratory abnormalities, including oxygen desaturation and oxygen-pulse flattening, compared to none in the control group. The MIS-C group also had lower peak exercise saturation (95.6 ± 3.5 vs. 97.6 ± 1.1) and lower breathing reserve (17.4% ± 7.5% vs. 27.4% ± 14.0% of MVV).
Conclusions: Patients who recovered from MIS-C related myocarditis may present exercise limitations. Functional assessment (e.g., CPET) should be included in routine examinations before allowing a return to physical activity in post-MIS-C myocarditis. Larger, longer term studies assessing functional capacity and focusing on physiological mechanisms are needed.

A Study of the Reliability, Validity, and Physiological Changes of Sit-to-Stand Tests in People With Heart Failure.

Adsett JA; Bowe R; Kelly R; Louis M; Morris N; Hwang R

Journal of cardiopulmonary rehabilitation and prevention [J Cardiopulm Rehabil Prev]
2023 May 01; Vol. 43 (3), pp. 214-219.
Date of Electronic Publication: 2022 Dec 14.

Purpose: The objective of this study was to describe the psychometric properties and physiological response of the five times sit-to-stand (STST-5) and 60-sec sit-to-stand test (STST-60) in adults with heart failure (HF).
Methods: People with HF enrolled in a 12-wk exercise rehabilitation program completed two STST-5 and two STST-60 as part of their usual baseline and follow-up assessments. Test-retest reliability, validity, and responsiveness of the two STSTs were described. Results were correlated with the 6-min walk test (6MWT) and timed up and go test (TUGT), and rating of perceived exertion and physiological responses were compared between all tests. Feasibility was also reported according to the presence of adverse events and adherence to the protocol.
Results: Forty-nine adults with HF participated in this study. Intraclass correlation coefficients of the STST-5 and STST-60 were 0.91 (95% CI, 0.78-0.96) and 0.96 (95% CI, 0.93-0.98), respectively. The STST-60 was strongly associated with both the 6MWT ( r = 0.76) and the TUGT ( rs =-0.77). The STST-5 was strongly associated with the TUGT ( rs = 0.79) and moderately associated with the 6MWT ( rs =-0.70). Rating of perceived exertion and lower limb fatigue were greater in the STST-60 than in the 6MWT ( P < .001) or STST-5 ( P < .001). Adverse events occurred in five participants undertaking the STST-60 and one participant undertaking the STST-5.
Conclusions: The STST-5 and STST-60 are reliable and valid measures of functional exercise capacity in people with HF.