Combined use of stress echocardiography and cardiopulmonary exercise testing to assess exercise intolerance in patients treated for acute myocardial infarction.

Smarz K; Jaxa-Chamiec T; Zaborska B; Tysarowski M; Budaj A;

PloS one [PLoS One] 2021 Aug 05; Vol. 16 (8), pp. e0255682. Date of Electronic Publication: 2021 Aug 05
(Print Publication: 2021).

Exercise intolerance after acute myocardial infarction (AMI) is a predictor of worse prognosis, but its causes are complex and poorly studied. This study assessed the determinants of exercise intolerance using combined stress echocardiography and cardiopulmonary exercise testing (CPET-SE) in patients treated for AMI. We prospectively enrolled patients with left ventricular ejection fraction (LV EF) ≥40% for more than 4 weeks after the first AMI. Stroke volume, heart rate, and arteriovenous oxygen difference (A-VO2Diff) were assessed during symptom-limited CPET-SE. Patients were divided into four groups according to the percentage of predicted oxygen uptake (VO2) (Group 1, <50%; Group 2, 50-74%; Group 3, 75-99%; and Group 4, ≥100%). Among 81 patients (70% male, mean age 58 ± 11 years, 47% ST-segment elevation AMI) mean peak VO2 was 19.5 ± 5.4 mL/kg/min. A better exercise capacity was related to a higher percent predicted heart rate (Group 2 vs. Group 4, p <0.01), higher peak A-VO2Diff (Group 1 vs. Group 3, p <0.01) but without differences in stroke volume. Peak VO2 and percent predicted VO2 had a significant positive correlation with percent predicted heart rate at peak exercise (r = 0.28, p = 0.01 and r = 0.46, p < 0.001) and peak A-VO2Diff (r = 0.68, p <0.001 and r = 0.36, p = 0.001) but not with peak stroke volume. Exercise capacity in patients treated for AMI with LV EF ≥40% is related to heart rate response during exercise and peak peripheral oxygen extraction. CPET-SE enables non-invasive assessment of the mechanisms of exercise intolerance.